35 research outputs found
Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin
Erythropoietin (EPO), originally identified for its critical hormonal role in regulating production and survival of erythrocytes, is a member of the type 1 cytokine superfamily. Recent studies have shown that EPO has cytoprotective effects in a wide variety of tissues, including the heart, by preventing apoptosis. However, EPO also has undesirable effects, such as thrombogenesis. In the present study, we investigated whether a helix B-surface peptide (HBSP), a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin, protects cardiomyocytes from apoptosis in vitro and in vivo. In cultured neonatal rat cardiomyocytes, HBSP clearly inhibited apoptosis (≈80%) induced by TNF-α, which was comparable with the effect of EPO, and activated critical signaling pathways of cell survival, including Akt, ERK1/2, and STAT3. Among these pathways, Akt was shown to play an essential role in HBSP-induced prevention of apoptosis, as assessed by using a small interfering RNA approach. In the dilated cardiomyopathic hamster (J2N-k), whose cardiac tissues diffusely expressed TNF-α, HBSP also inhibited apoptosis (≈70%) and activated Akt in cardiomyocytes. Furthermore, the levels of serum creatine kinase activity and of cardiac expression of atrial natriuretic peptide, a marker of chronic heart failure, were down-regulated in animals treated with HBSP. These data demonstrate that HBSP protects cardiomyocytes from apoptosis and leads to a favorable outcome in failing hearts through an Akt-dependent pathway. Because HBSP does not have the undesirable effects of EPO, it could be a promising alternative for EPO to treat cardiovascular diseases, such as myocardial infarction and heart failure
Dual sources of vitronectin in the human lower urinary tract: synthesis by urothelium vs. extravasation from the bloodstream
Vitronectin (VN), secreted into the bloodstream by liver hepatocytes, is known to anchor epithelial cells to basement membranes through interactions with cell surface integrin receptors. We report here that VN is also synthesized by urothelial cells of urothelium in vivo and in vitro. In situ hybridization, dideoxy sequencing, immunohistochemistry, and ELISA of urothelial cell mRNA, cDNA, tissue, and protein extracts demonstrated that the VN gene is active in vivo and in vitro. The expression of VN by urothelium is hypothesized to constitute one of several pathways that anchor basal cells to an underlying substratum and explains why urothelial cells adhere to glass and propagate under serum-free conditions. Therefore, two sources of VN in the human urinary bladder are recognized: 1) localized synthesis by urothelial cells and 2) extravasation of liver VN through fenestrated capillaries. When human plasma was fractionated by denaturing heparin affinity chromatography, VN was isolated in a biologically active form that supported rapid spreading of urothelial cells in vitro under serum-free conditions. This activity was inhibited by the matricellular protein SPARC via direct binding of VN to SPARC through a Ca+2-dependent mechanism. A novel form of VN, isolated from the same heparin affinity chromatography column and designated as the VN(c) chromatomer, also supported cell spreading but failed to interact with SPARC. Therefore, the steady-state balance among urothelial cells, their extracellular milieu, and matricellular proteins constitutes a principal mechanism by which urothelia are anchored to an underlying substrata in the face of constant bladder cycling