839 research outputs found
Multi-photon Rabi oscillations in high spin paramagnetic impurity
We report on multiple photon monochromatic quantum oscillations (Rabi
oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of
Mn (S=5/2) impurities in MgO. We find that when the microwave magnetic
field is similar or large than the anisotropy splitting, the Rabi oscillations
have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model.
We show that these new frequencies come from multiple photon coherent
manipulation of the multi-level spin impurity. We develop a model based on the
crystal field theory and the rotating frame approximation, describing the
observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10
Magnetic strong coupling in a spin-photon system and transition to classical regime
We study the energy level structure of the Tavis-Cumming model applied to an
ensemble of independent magnetic spins coupled to a variable number of
photons. Rabi splittings are calculated and their distribution is analyzed as a
functin of photon number and spin system size . A sharp
transition in the distribution of the Rabi frequency is found at . The width of the Rabi frequency spectrum diverges as
at this point. For increased number of photons , the Rabi
frequencies converge to a value proportional to . This
behavior is interpreted as analogous to the classical spin resonance mechanism
where the photon is treated as a classical field and one resonance peak is
expected. We also present experimental data demonstrating cooperative, magnetic
strong coupling between a spin system and photons, measured at room
temperature. This points towards quantum computing implementation with magnetic
spins, using cavity quantum-electrodynamics techniques.Comment: Received 8 April 2010; revised manuscript received 17 June 2010;
published 14 July 201
Entrapment of magnetic micro-crystals for on-chip electron spin resonance studies
On-chip Electron Spin Resonance (ESR) of magnetic molecules requires the
ability to precisely position nanosized samples in antinodes of the
electro-magnetic field for maximal magnetic interaction. A method is developed
to entrap micro-crystals containing spins in a well defined location on a
substrate's surface. Traditional cavity ESR measurements are then performed on
a mesoscopic crystal at 34 GHz. Polycrystalline diluted Cr spins were
entrapped as well and measured while approaching the lower limit of the ESR
sensitivity. This method suggests the feasibility of on-chip ESR measurements
at dilution refrigerator temperatures by enabling the positioning of samples
atop an on-chip superconducting cavity.Comment: to appear in Journal of Applied Physic
Spin-Orbit Coupling Fluctuations as a Mechanism of Spin Decoherence
We discuss a general framework to address spin decoherence resulting from
fluctuations in a spin Hamiltonian. We performed a systematic study on spin
decoherence in the compound K[VAsO(DO)]
8DO, using high-field Electron Spin Resonance (ESR). By analyzing the
anisotropy of resonance linewidths as a function of orientation, temperature
and field, we find that the spin-orbit term is a major decoherence source. The
demonstrated mechanism can alter the lifetime of any spin qubit and we discuss
how to mitigate it by sample design and field orientation.Comment: submitte
Tunable multi-photon Rabi oscillations in an electronic spin system
We report on multi-photon Rabi oscillations and controlled tuning of a
multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a
quasi-harmonic level configuration. The anisotropy is much smaller than the
Zeeman splittings, such as the six level scheme shows only a small deviation
from an equidistant diagram. This allows us to tune the spin dynamics by either
compensating the cubic anisotropy with a precise static field orientation, or
by microwave field intensity. Using the rotating frame approximation, the
experiments are very well explained by both an analytical model and a
generalized numerical model. The calculated multi-photon Rabi frequencies are
in excellent agreement with the experimental data
Photon and spin dependence of the resonance lines shape in the strong coupling regime
We study the quantum dynamics of a spin ensemble coupled to cavity photons.
Recently, related experimental results have been reported, showing the
existence of the strong coupling regime in such systems. We study the
eigenenergy distribution of the multi-spin system (following the Tavis-Cummings
model) which shows a peculiar structure as a function of the number of cavity
photons and of spins. We study how this structure causes changes in the
spectrum of the admittance in the linear response theory, and also the
frequency dependence of the excited quantities in the stationary state under a
probing field. In particular, we investigate how the structure of the higher
excited energy levels changes the spectrum from a double-peak structure (the
so-called vacuum field Rabi splitting) to a single peak structure. We also
point out that the spin dynamics in the region of the double-peak structure
corresponds to recent experiments using cavity ringing while in region of the
single peak structure, it corresponds to the coherent Rabi oscillation in a
driving electromagnetic filed. Using a standard Lindblad type mechanism, we
study the effect of dissipations on the line width and separation in the
computed spectra. In particular, we study the relaxation of the total spin in
the general case of a spin ensemble in which the total spin of the system is
not specified. The theoretical results are correlated with experimental
evidence of the strong coupling regime, achieved with a spin 1/2 ensemble
Author Correction:Experimental protection of quantum coherence by using a phase-tunable image drive (Scientific Reports, (2020), 10, 1, (21643), 10.1038/s41598-020-77047-5)
The original version of this Article contained an error
Decoherence window and electron-nuclear cross-relaxation in the molecular magnet V 15
Rabi oscillations in the V_15 Single Molecule Magnet (SMM) embedded in the
surfactant DODA have been studied at different microwave powers. An intense
damping peak is observed when the Rabi frequency Omega_R falls in the vicinity
of the Larmor frequency of protons w_N, while the damping time t_R of
oscillations reaches values 10 times shorter than the phase coherence time t_2
measured at the same temperature. The experiments are interpreted by the N-spin
model showing that t_R is directly associated with the decoherence via
electronic/nuclear spin cross-relaxation in the rotating reference frame. It is
shown that this decoherence is accompanied with energy dissipation in the range
of the Rabi frequencies w_N - sigma_e < Omega_R < w_N, where sigma_e is the
mean super-hyperfine field (in frequency units) induced by protons at SMMs.
Weaker damping without dissipation takes place outside this dissipation window.
Simple local field estimations suggest that this rapid cross-relaxation in
resonant microwave field observed for the first time in SMMV_15 should take
place in other SMMs like Fe_8 and Mn_12 containing protons, too
Multiphoton coherent manipulation in large-spin qubits
Large spin Mn2+ ions (S=5/2) diluted in a non-magnetic MgO matrix of high
crystalline symmetry are used to realize a six level system that can be
operated by means of multi-photon coherent Rabi oscillations. This spin system
has a very small anisotropy which can be tuned in-situ to reversibly transform
the system between harmonic and non-harmonic level configurations. Decoherence
effects are strongly suppressed as a result of the quasi-isotropic electron
interaction with the crystal field and with the 55Mn nuclear spins. These
results suggest new ways of manipulating, reading and resetting spin quantum
states which can be applied to encode a qubit across several quantum levels.Comment: Published versio
- …