18 research outputs found

    Communication: UV photoionization of cytosine catalyzed by Ag+

    Get PDF
    The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag+) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg+ complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt+) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag+, as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag+ could have important implications as point mutation of DNA upon sunlight exposition.Fil: Taccone, Martín Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Féraud, Geraldine. Aix Marseille Université. Physique des Interactions Ioniques et Moléculaires; FranciaFil: Berdakin, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Dedonder Lardeux, Claude. Aix Marseille Université. Physique des Interactions Ioniques et Moléculaires; FranciaFil: Jouvet, Christophe. Physique des Interactions Ioniques et Moléculaires; FranciaFil: Pino, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Disrupting the wall accumulation of human sperm cells by artificial corrugation

    Get PDF
    Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers. In this work, we characterize the motion of human sperm cells 60μm60 \mu m long, strongly confined to 25μm25 \mu m shallow chambers. We investigate the nature of the cell trajectories between the confining surfaces and their accumulation near the borders. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and bottom surfaces separated by stretches of quasi-free motion in between the two surfaces, as confirmed by depth resolved confocal microscopy studies. We show that the introduction of artificial petal-shaped corrugation in the lateral boundaries removes the tendency of cells to accumulate near the borders, an effect which we hypothesize may be valuable for microfluidic applications in biomedicine.Comment: 9 pages, latex. In accepted version on April 14, v2: abstract modified, information added to Sec. II.A and experiments added to Sec. III.A and Fig.3. Sec. III.C was deleted. Requested references adde

    Geometrical guidance and trapping transition of human sperm cells

    Get PDF
    The guidance of human sperm cells under confinement in quasi-2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with diluted sperm populations, for which effects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identified and analyzed. We also show that highly efficient microratchets can be fabricated by using curved asymmetric obstacles to take advantage of the spermatozoa specific swimming strategy.publishedVersionFil: Guidobaldi, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Guidobaldi, Héctor Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular; Argentina.Fil: Jeyaram, Y. Katholieke Universiteit Leuven. Institute for Nanoscale Physics and Chemistry; Bélgica.Fil: Berdakin, Ivan. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Berdakin, Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Moshchalkov, V. V. Katholieke Universiteit Leuven. Institute for Nanoscale Physics and Chemistry; Bélgica.Fil: Condat, Carlos Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Condat, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Marconi, Verónica Iris. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Marconi, Verónica Iris. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Giojalas, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Giojalas, Laura Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular ; Argentina.Fil: Silhanek, Alejandro V. Université de Liège. Faculté des Sciences. Departement de Physique; Bélgica.Biofísic

    Ratchet Effects in Active Matter Systems

    No full text

    THE CYTOSINE WATER COMPLEX

    No full text
    Author Institution: Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Cientifico, Universidad de Valladolid, 47011 Valladolid, SpainA multi FID system has been adapted into the operation sequence \textbf{1996}, \textit{67}, 4072 -- 4084.} of the LA-MB-FTMW spectrometer. \textbf{2009}, \textit{11}, 617 -- 627.} Thanks to the reached sensitivity, one monohydrate of cytosine (A=3725.61A= 3725.61~(26)~MHz, B=980.385B=980.385~(76)~MHz, C=777.231C=777.231~(46)~MHz) has been detected in the supersonic expansion

    Influence of swimming strategy on microorganism separation by asymmetric obstacles

    Get PDF
    It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the noncentrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion, and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency. In addition, we optimize the geometrical dimensions of the asymmetric pillars in order to maximize the swimmer concentration and we illustrate how it can be used for sorting by swimming strategy in a long array of parallel obstacles
    corecore