64 research outputs found

    Stretch-Activated Piezo1 Channel in Endothelial Cells Relaxes Mouse Intrapulmonary Arteries

    Get PDF
    In intrapulmonary artery (IPA), endothelial cells (EC) respond to mechanical stimuli by releasing vasoactive factors to set the vascular tone. Piezo1, a stretch-activated calcium permeable channel is a sensor of mechanical stress in EC. The present study was undertaken to investigate the implication of Piezo1 in the endothelium-dependent regulation of IPA tone and its potential involvement in pulmonary hypertension, the main disease of this circulation. IPA tone was quantified by means of a myograph in control Piezo1+/+ mouse and in mouse lacking endothelial Piezo1 (EC-Piezo1-/-). Endothelial intracellular calcium concentration ([Ca2+]i) and nitric oxide (NO) production were measured, in mouse or human EC, with fluo-4 and DAF-fm probes, respectively. Immunofluorescence labeling and patch-clamp experiments revealed the presence of Piezo1 channels in EC. Yoda1, a Piezo1 agonist, induced an endothelium-dependent relaxation that was significantly reduced in pulmonary arteries in EC-Piezo1-/- compared to Piezo1+/+ mouse. Yoda1 as well as mechanical stimulation (by osmotic stress) increased [Ca2+]i in mouse or human EC. Consequently, both stimuli increased the production of NO. NO and [Ca2+]i increases were reduced in EC from Piezo1-/- mouse or in the presence of Piezo1 inhibitors. Furthermore, deletion of Piezo1 increased alpha-adrenergic mediated contraction. Finally, in chronically hypoxic mice, a model of pulmonary hypertension, Piezo1 still mediated arterial relaxation and deletion of this channel did not impair the development of the disease. The present study thus demonstrates that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i and NO production and that this effect is still present in pulmonary hypertension

    Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Get PDF
    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners

    Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’

    Full text link
    corecore