31,624 research outputs found
A critical layer model for turbulent pipe flow
A model-based description of the scaling and radial location of turbulent
fluctuations in turbulent pipe flow is presented and used to illuminate the
scaling behaviour of the very large scale motions. The model is derived by
treating the nonlinearity in the perturbation equation (involving the Reynolds
stress) as an unknown forcing, yielding a linear relationship between the
velocity field response and this nonlinearity. We do not assume small
perturbations. We examine propagating modes, permitting comparison of our
results to experimental data, and identify the steady component of the velocity
field that varies only in the wall-normal direction as the turbulent mean
profile. The "optimal" forcing shape, that gives the largest velocity response,
is assumed to lead to modes that will be dominant and hence observed in
turbulent pipe flow.
An investigation of the most amplified velocity response at a given
wavenumber-frequency combination reveals critical layer-like behaviour
reminiscent of the neutrally stable solutions of the Orr-Sommerfeld equation in
linearly unstable flow. Two distinct regions in the flow where the influence of
viscosity becomes important can be identified, namely a wall layer that scales
with and a critical layer, where the propagation velocity is equal
to the local mean velocity, that scales with in pipe flow. This
framework appears to be consistent with several scaling results in wall
turbulence and reveals a mechanism by which the effects of viscosity can extend
well beyond the immediate vicinity of the wall.Comment: Submitted to the Journal of Fluid Mechanics and currently under
revie
Turbulence and Mixing in the Intracluster Medium
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense
with the entropy increasing outwards. However, thermal conduction along
magnetic field lines fundamentally changes the stability of the ICM, leading to
the "heat-flux buoyancy instability" when and the "magnetothermal
instability" when . The ICM is thus buoyantly unstable regardless of
the signs of and . On the other hand, these
temperature-gradient-driven instabilities saturate by reorienting the magnetic
field (perpendicular to when and parallel to when ), without generating sustained convection. We show that
after an anisotropically conducting plasma reaches this nonlinearly stable
magnetic configuration, it experiences a buoyant restoring force that resists
further distortions of the magnetic field. This restoring force is analogous to
the buoyant restoring force experienced by a stably stratified adiabatic
plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or
cosmic-ray buoyancy) to overcome this restoring force and generate turbulence
in the ICM, the strength of the driving must exceed a threshold, corresponding
to turbulent velocities . For weaker driving, the ICM
remains in its nonlinearly stable magnetic configuration, and turbulent mixing
is effectively absent. We discuss the implications of these findings for the
turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The
Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the
general mixing properties of the IC
Proposed Model for Degradation of Gunn Diodes as Observed from Study of the I-V Characteristics
The effect of heat treatment on the functional Gunn diodes has been investigated in the temperature range of 200-300°C. The influence of electricfield during heat treatment has also been studied. The simple variations in I-V characteristics with annealing time have been utilized to interpret the contact behaviour
Predicting structural and statistical features of wall turbulence
The majority of practical flows, particularly those flows in applications of importance to transport, distribution and climate, are turbulent and as a result experience complex three-dimensional motion with increased drag compared with the smoother, laminar condition. In this study, we describe the development of a simple model that predicts important structural and scaling features of wall turbulence. We show that a simple linear superposition of modes derived from a forcing-response analysis of the Navier-Stokes equations can be used to reconcile certain key statistical and structural descriptions of wall turbulence. The computationally cheap approach explains and predicts vortical structures and velocity statistics of turbulent flows that have previously been identified only in experiments or by direct numerical simulation. In particular, we propose an economical explanation for the meandering appearance of very large scale motions observed in turbulent pipe flow, and likewise demonstrate that hairpin vortices are predicted by the model. This new capability has clear implications for modeling, simulation and control of a ubiquitous class of wall flows
NFV service dynamicity with a DevOps approach : demonstrating zero-touch deployment & operations
Next generation network services will be realized by NFV-based microservices to enable greater dynamics in deployment and operations. Here, we present a demonstrator that realizes this concept using the NFV platform built in the EU FP7 project UNIFY. Using the example of an Elastic Router service, we show automated deployment and configuration of service components as well as corresponding monitoring components facilitating automated scaling of the entire service. We also demonstrate automatic execution of troubleshooting and debugging actions. Operations of the service are inspired by DevOps principles, enabling quick detection of operational conditions and fast corrective actions. This demo conveys essential insights on how the life-cycle of an NFV-based network service may be realized in future NFV platforms
Surface and Bulk Structural Properties of Single Crystalline Sr3Ru2O7
We report temperature and thermal-cycling dependence of surface and bulk
structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface
and bulk structures were investigated using low-energy electron diffraction
(LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively.
Single-crystal XRD data is in good agreement with previous reports for the bulk
structure with RuO6 octahedral rotation, which increases with decreasing
temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED
results reveal that the octahedra at the surface are much more distorted with a
higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt
((4.5\pm2.5) degrees at 300 K and (2.5\pm1.7) degrees at 80 K). While XRD data
confirms temperature dependence of the unit cell height/width ratio (i.e.
lattice parameter c divided by the average of parameters a and b) found in a
prior neutron powder diffraction investigation, both bulk and surface
structures display little change with thermal cycles between 300 and 80 K.Comment: 25 pages, 5 figures, 5 tables, to appear in Physical Review
Generalized q-Deformed Symplectic sp(4) Algebra for Multi-shell Applications
A multi-shell generalization of a fermion representation of the q-deformed
compact symplectic sp_q(4) algebra is introduced. An analytic form for the
action of two or more generators of the Sp_q(4) symmetry on the basis states is
determined and the result used to derive formulae for the overlap between
number preserving states as well as for matrix elements of a model Hamiltonian.
A second-order operator in the generators of Sp_q(4) is identified that is
diagonal in the basis set and that reduces to the Casimir invariant of the
sp(4) algebra in the non-deformed limit of the theory. The results can be used
in nuclear structure applications to calculate beta-decay transition
probabilities and to provide for a description of pairing and higher-order
interactions in systems with nucleons occupying more than a single-j orbital.Comment: 10 page
- …