94 research outputs found
Raman spectra of MgB2 at high pressure and topological electronic transition
Raman spectra of the MgB2 ceramic samples were measured as a function of
pressure up to 32 GPa at room temperature. The spectrum at normal conditions
contains a very broad peak at ~590 cm-1 related to the E2g phonon mode. The
frequency of this mode exhibits a strong linear dependence in the pressure
region from 5 to 18 GPa, whereas beyond this region the slope of the
pressure-induced frequency shift is reduced by about a factor of two. The
pressure dependence of the phonon mode up to ~ 5GPa exhibits a change in the
slope as well as a "hysteresis" effect in the frequency vs. pressure behavior.
These singularities in the E2g mode behavior under pressure support the
suggestion that MgB2 may undergo a pressure-induced topological electronic
transition.Comment: 2 figure
Analyticity and compactness of semigroups of composition operators
This paper provides a complete characterization of quasicontractive groups and analytic C0C0-semigroups on Hardy and Dirichlet space on the unit disc with a prescribed generator of the form Af=Gf′Af=Gf′. In the analytic case we also give a complete characterization of immediately compact semigroups. When the analyticity fails, we obtain sufficient conditions for compactness and membership in the trace class. Finally, we analyse the case where the unit disc is replaced by the right-half plane, where the results are drastically different
A Marine Biodiversity Observation Network for Genetic Monitoring of Hard-Bottom Communities (ARMS-MBON)
Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here, we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu)
B NMR study of pure and lightly carbon doped MgB superconductors
We report a B NMR line shape and spin-lattice relaxation rate
() study of pure and lightly carbon doped MgBC for
, 0.02, and 0.04, in the vortex state and in magnetic field of 23.5 kOe.
We show that while pure MgB exhibits the magnetic field distribution from
superposition of the normal and the Abrikosov state, slight replacement of
boron with carbon unveils the magnetic field distribution of the pure Abrikosov
state. This indicates a considerable increase of with carbon doping
with respect to pure MgB. The spin-lattice relaxation rate
demonstrates clearly the presence of a coherence peak right below in pure
MgB, followed by a typical BCS decrease on cooling. However, at
temperatures lower than K strong deviation from the BCS behavior is
observed, probably from residual contribution of the vortex dynamics. In the
carbon doped systems both the coherence peak and the BCS temperature dependence
of weaken, an effect attributed to the gradual shrinking of the
hole cylinders of the Fermi surface with electron doping.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements
The low-temperature heat capacities of nickel titanate (NiTiO3), cobalt titanate (CoTiO3), and cobalt carbonate (CoCO3) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO3 and 26 K for NiTiO3. From our data we calculate standard molar entropies (298.15 K) for NiTiO3 of 90.9 ± 0.7 J mol-1 K-1 and for CoTiO3 of 94.4 ± 0.8 J mol-1 K-1. For CoCO3, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO3 of 88.9 ± 0.7 J mol-1 K-1
- …