180 research outputs found

    On the Temperature Dependence of the Casimir Effect

    Full text link
    The temperature dependence of the Casimir force between a real metallic plate and a metallic sphere is analyzed on the basis of optical data concerning the dispersion relation of metals such as gold and copper. Realistic permittivities imply, together with basic thermodynamic considerations, that the transverse electric zero mode does not contribute. This results in observable differences with the conventional prediction, which does not take this physical requirement into account. The results are shown to be consistent with the third law of thermodynamics, as well as being consistent with current experiments. However, the predicted temperature dependence should be detectable in future experiments. The inadequacies of approaches based on {\it ad hoc} assumptions, such as the plasma dispersion relation and the use of surface impedance without transverse momentum dependence, are discussed.Comment: 14 pages, 3 eps figures, revtex4. New version includes clarifications and new reference. Accepted for publication in Phys. Rev.

    The Tidal Tails of NGC 5466

    Full text link
    The study of substructure in the stellar halo of the Milky Way has made a lot of progress in recent years, especially with the advent of surveys like the Sloan Digital Sky Survey. Here, we study the newly discovered tidal tails of the Galactic globular cluster NGC 5466. By means of numerical simulations, we reproduce the shape, direction and surface density of the tidal tails, as well as the structural and kinematical properties of the present-day NGC 5466. Although its tails are very extended in SDSS data (> 45 degrees), NGC 5466 is only losing mass slowly at the present epoch and so can survive for probably a further Hubble time. The effects of tides at perigalacticon and disc crossing are the dominant causes of the slow dissolution of NGC 5466, accounting for about 60 % of the mass loss over the course of its evolution. The morphology of the tails provides a constraint on the proper motion -- the observationally determined proper motion has to be refined (within the stated error margins) to match the location of the tidal tails.Comment: MNRAS, in pres

    Calibration of radii and masses of open clusters with a simulation

    Full text link
    Context: A recent new approach to apply a simple dynamical mass estimate of tidally limited star clusters is based on the identification of the tidal radius in a King profile with the dynamical Jacobi radius. The application to an unbiased open cluster catalogue yields significantly higher cluster masses compared to the classical methods. Aims: We quantify the bias in the mass determination as function of projection direction and cluster age by analysing a simulated star cluster. Methods: We use direct NN-body simulations of a star cluster including stellar evolution in an analytic Milky Way potential and apply a best fit to the projected number density of cluster stars. Results: We obtain significantly overestimated star cluster masses which depend strongly on the viewing direction. The overestimation is typically in the range of 10-50 percent and reaches a factor of 3.5 for young clusters. Mass segregation reduces the derived limiting radii systematically.Comment: 9 pages, 10+1 figures, accepted by Astronomy and Astrophysic

    Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood

    Get PDF
    The stars that populate the solar neighbourhood were formed in stellar clusters. Through N-body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction are not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the solar system, the planets orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet-planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extra-solar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of solar-system-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the solar system around single stars, dynamical encounters in young stellar clusters may produce at least some of the extra-solar planetary systems observed in the solar neighbourhood.Comment: 11 pages, 9 figures, 1 table. Accepted for publication in MNRA

    The Casimir Problem of Spherical Dielectrics: Quantum Statistical and Field Theoretical Approaches

    Full text link
    The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel method, which turns out to be quite powerful (we have shown this to be true in other situations also), we consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara frequency (n=0n=0). Thereafter, the time-dependent case is examined. For comparison we consider the calculation of the free energy with use of the more commonly known field theoretical method, assuming for simplicity metallic boundary surfaces.Comment: 31 pages, LaTeX, one new reference; version to appear in Phys. Rev.
    • …
    corecore