225 research outputs found

    Exchange interactions in transition metal oxides: The role of oxygen spin polarization

    Get PDF
    Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO, and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. General applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.Comment: 19 pages, 2 figure

    Geometric, electronic and magnetic structure of Fex_{x}Oy+_{y}^{+} clusters

    Get PDF
    Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functional theory in combination with a genetic search algorithm, GGA+U+U and a hybrid functional to determine the structure of gas phase Fex_{x}Oy+/0_{y}^{+/0} clusters. For Fex_{x}Oy_{y} cation clusters we also calculate the corresponding vibration spectra and compare them with experiments. We successfully identify Fe3_{3}O4+_{4}^{+}, Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe5_{5}O7+_{7}^{+} and propose structures for Fe6_{6}O8+_{8}^{+}. Within the triangular geometric structure of Fe3_{3}O4+_{4}^{+} a non-collinear, ferrimagnetic and ferromagnetic state are comparable in energy. Fe4_{4}O5+_{5}^{+} and Fe4_{4}O6+_{6}^{+} are ferrimagnetic with a residual magnetic moment of 1~\muB{} due to ionization. Fe5_{5}O7+_{7}^{+} is ferrimagnetic due to the odd number of Fe atoms. We compare the electronic structure with bulk magnetite and find Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe6_{6}O8+_{8}^{+} to be mixed valence clusters. In contrast, in Fe3_{3}O4+_{4}^{+} and Fe5_{5}O7+_{7}^{+} all Fe are found to be trivalent.Comment: 14 pages, 21 figure

    Photoinduced superconducting nanowires in Gd-Ba-Cu-O films

    Full text link
    We report the fabrication of high Tc superconducting wires by photodoping a GdBa2Cu3O{6.5} thin film. An optical near-field probe was used to locally excite carriers in the system at room temperature. Trapping of the photogenerated electrons define a confining potential for the conducting holes in the CuO planes. Spatially resolved reflectance measurements show the photogenerated nanowires to be ~ 250 nm wide. Electron diffusion, before electron capture, is believed to be responsible for the observed width of the wires.Comment: 8 pages, 3 figures Submitted to Appl. Phys. Let

    Enhancement of the Curie temperature in small particles of weak itinerant ferromagnets

    Get PDF
    Self consistent renormalization theory of itinerant ferromagnets is used to calculate the Curie temperature of clusters down to approximately 100 atoms in size. In these clusters the electrons responsible for the magnetic properties are assumed to be (weakly) itinerant. It is shown that the Curie temperature can be larger than in the bulk. The effect originates from the phenomenon of level repulsion in chaotic quantum systems, which suppresses spin fluctuations. Since the latter destroy the magnetic order the resulting Curie temperature increases, contrary to expectations of the naive Stoner picture. The calculations are done assuming that the energy levels of the cluster are described by the Gaussian Orthogonal Ensemble of random matrix theory.Comment: Phys. Rev. B, accepted for publicatio

    Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    Get PDF
    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin-lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin-orbit coupling.Comment: 7 pages, 5 figure

    Magnetic properties of Co doped Nb clusters

    Get PDF
    From magnetic deflection experiments on isolated Co doped Nb clusters we made the interesting observation of some clusters being magnetic, while others appear to be non-magnetic. There are in principle two explanations for this behavior. Either the local moment at the Co site is completely quenched or it is screened by the delocalized electrons of the cluster, i.e. the Kondo effect. In order to reveal the physical origin, we conducted a combined theoretical and experimental investigation. First, we established the ground state geometry of the clusters by comparing the experimental vibrational spectra with those obtained from a density functional theory study. Then, we performed an analyses based on the Anderson impurity model. It appears that the non-magnetic clusters are due to a complete quenching of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signalled by a large effective hybridization around the chemical potential.Comment: 14 pages, 8 figure

    Quantum control on entangled bipartite qubits

    Full text link
    Ising interaction between qubits could produce distortion in entangled pairs generated for engineering purposes (as in quantum computation) in presence of parasite magnetic fields, destroying or altering the expected behavior of process in which is projected to be used. Quantum control could be used to correct that situation in several ways. Sometimes the user should be make some measurement upon the system to decide which is the best control scheme; other posibility is try to reconstruct the system using similar procedures without perturbate it. In the complete pictures both schemes are present. We will work first with pure systems studying advantages of different procedures. After, we will extend these operations when time of distortion is uncertain, generating a mixed state, which needs to be corrected by suposing the most probably time of distortion.Comment: 10 pages, 5 figure

    Dynamics of pH-sensitive nitroxide radicals in water adsorbed in ordered mesoporous molecular sieves by EPR Spectroscopy

    Full text link
    A spin pH probe technique was used to study the influence of the channel diameter on the EPR spectra of pH-sensitive nitroxide radicals (NR) located in the channels of the mesoporous molecular sieves MCM-41 and SBA-15 with diameters ranging from 2.3 to 8.1 nm. From EPR spectra analysis and the results of the NR retention by the mesoporous molecular sieves upon washing with an aqueous KCl solution, the regularities of NR molecular location inside the channels were studied. The obtained dependence of the fraction of the radical molecules in the fast motional regime (with the rotational correlation times, τc = 2 × 10-11 s-9 × 10-11s) in the channels of the mesoporous molecular sieves as a function of pH indicates that both NR in the fast and slow motional regime (with τc = 8 × 10 -9s-7 × 10-10s) may be used for estimation of the solution acidity inside the channels and of the near-surface electrical potential. © 2013 Elsevier Inc. All rights reserved

    Correlation effects and orbital magnetism of Co clusters

    Get PDF
    Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the importance of dynamic correlations effects for determining fundamental magnetic properties of magnets in the nano-size regime
    corecore