1,311 research outputs found
Lateral imaging of the superconducting vortex lattice using Doppler-modulated scanning tunneling microscopy
By spatially mapping the Doppler effect of an in-plane magnetic field on the
quasiparticle tunneling spectrum, we have laterally imaged the vortex lattice
in superconducting 2H-NbSe2. Cryomagnetic scanning tunneling spectroscopy was
performed at 300 mK on the ab-surface oriented parallel to the field H.
Conductance images at zero bias show stripe patterns running along H, with the
stripe separation varying as H^-0.5. Regions of higher zero-bias conductance
show lower gap-edge conductance, consistent with spectral redistribution by
spatially-modulated superfluid momentum. Our results are interpreted in terms
of the interaction between vortical and screening currents, and demonstrate a
general method for probing subsurface vortices.Comment: 3 pages, 3 figures, to appear in Applied Physics Letter
Effect of angular momentum distribution on gravitational loss-cone instability in stellar clusters around massive BH
Small perturbations in spherical and thin disk stellar clusters surrounding
massive a black hole are studied. Due to the black hole, stars with
sufficiently low angular momentum escape from the system through the loss cone.
We show that stability properties of spherical clusters crucially depend on
whether the distribution of stars is monotonic or non-monotonic in angular
momentum. It turns out that only non-monotonic distributions can be unstable.
At the same time the instability in disk clusters is possible for both types of
distributions.Comment: 14 pages, 7 figures, submitted to MNRA
Elliptical motions of stars in close binary systems
Motions of stars in close binary systems with a conservative mass exchange
are examined. It is shown that Paczynski-Huang model widely used now for
obtaining the semi-major axis variation of a relative stars orbit is incorrect,
because it brings about large mistakes. A new model suitable for elliptical
orbits of stars is proposed. Both of reactive and attractive forces between
stars and a substance of the flowing jet are taken into account. A possibility
of a mass exchange at presence of accretion disk is considere
The Radial Orbit Instability in Collisionless N-Body Simulations
Using a suite of self-gravitating, collisionless N-body models, we
systematically explore a parameter space relevant to the onset and behavior of
the radial orbit instability (ROI), whose strength is measured by the systemic
axis ratios of the models. We show that a combination of two initial
conditions, namely the velocity anisotropy and the virial ratio, determines
whether a system will undergo ROI and exactly how triaxial the system will
become. A third initial condition, the radial shape of the density profile,
plays a smaller, but noticeable role. Regarding the dynamical development of
the ROI, the instability a) begins after systems collapse to their most compact
configuration and b) evolves fastest when a majority of the particles have
radially anisotropic orbits while there is a lack of centrally-concentrated
isotropic orbits. We argue that this is further evidence that self-reinforcing
torques are the key to the onset of the ROI. Our findings support the idea that
a separate orbit instability plays a role in halting the ROI.Comment: accepted for publication in ApJ. 9 figures in emulateapj styl
Π€ΡΠ°Π·Π΅ΠΎΠ»ΠΎΠ³ΠΈΠ·ΠΌ ΠΊΠ°ΠΊ ΠΎΡΠΎΠ±ΡΠΉ ΡΠΈΠΏ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½ΠΎΠΌΠΈΠ½Π°ΡΠΈΠΈ
ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΡΡΡ ΠΊΠΎΠ³Π½ΠΈΡΠΈΠ²Π½Π°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° ΡΡΠ°Π·Π΅ΠΎΠ»ΠΎΠ³ΠΈΠ·ΠΌΠΎΠ² Π² ΡΡΠ΅ΡΠ΅ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½ΠΎΠΌΠΈΠ½Π°ΡΠΈΠΈ, Π²ΡΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ
Π΅Π΄ΠΈΠ½ΠΈΡ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΈΠΏΠ°ΠΌΠΈ Π·Π½Π°Π½ΠΈΡ. ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΠΈΠ½Π°ΠΌ ΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌ Π²ΡΠ±ΠΎΡΠ° ΡΡΠ°Π·Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½ΠΎΠΌΠΈΠ½Π°ΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. ΠΠ²ΡΠΎΡ ΡΡΠ°ΡΡΠΈ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ ΡΠ΅ΡΠΌΠΈΠ½-ΡΡΠ°Π·Π΅ΠΎΠ»ΠΎΠ³ΠΈΠ·ΠΌ Π²Π΅ΡΠ±Π°Π»ΠΈΠ·ΡΠ΅Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ Π²Π½Π΅ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΠ΅, Π²ΠΎΡΠΏΡΠΈΠ½ΡΡΠΎΠΌ Π½ΠΎΠΌΠΈΠ½Π°ΡΠΎΡΠΎΠΌ Π² Π΅Π³ΠΎ Π½Π΅ΡΠ°ΡΡΠ»Π΅Π½Π΅Π½Π½ΠΎΠΉ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΡΡΠΈ.The article examines the cognitive nature of phraseologisms in terminological nomination, reveals correlation of these units with different types of knowledge. Special attention is paid to the reasons and factors of choosing of phraseological nomination when transmitting special knowledge. The author of the article claims that the term-phraseologism verbalizes comprehensive information about outer professional object, perceived by the nominator in its nonsegmented integrity
Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach
Lyapunov-Krasowskii functionals are used to design quantized control laws for
nonlinear continuous-time systems in the presence of constant delays in the
input. The quantized control law is implemented via hysteresis to prevent
chattering. Under appropriate conditions, our analysis applies to stabilizable
nonlinear systems for any value of the quantization density. The resulting
quantized feedback is parametrized with respect to the quantization density.
Moreover, the maximal allowable delay tolerated by the system is characterized
as a function of the quantization density.Comment: 31 pages, 3 figures, to appear in Mathematics of Control, Signals,
and System
Π£Π³ΠΎΠ»ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΡ ΠΠ·ΠΈΠ°ΡΡΠΊΠΎΠΉ Π ΠΎΡΡΠΈΠΈ ΠΊΠ°ΠΊ Π΄ΡΠ°ΠΉΠ²Π΅Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ
ΠΠΎΠ»ΠΈΡΠΈΠΊΠ° Π΄Π΅ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ, ΡΠΎΡΡ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΡΡΠΈ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ, ΠΊΠ°ΠΊ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅, ΡΠΆΠ΅ΡΡΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½ΠΎΠΉ Π±ΠΎΡΡΠ±Ρ Π½Π° Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠΌ ΡΡΠ½ΠΊΠ΅ ΡΠ½Π΅ΡΠ³ΠΎΡΠ΅ΡΡΡΡΠΎΠ² ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡ ΡΠΈΡΠΊΠΈ Π΄Π»Ρ ΠΏΠΎΡΡΠ°Π²ΡΠΈΠΊΠΎΠ² ΡΠ³Π»Ρ, Π² ΠΈΡ
ΡΠΈΡΠ»Π΅ Π ΠΎΡΡΠΈΡ β ΡΡΠ΅ΡΠΈΠΉ Π² ΠΌΠΈΡΠ΅ ΡΠΊΡΠΏΠΎΡΡΠ΅Ρ ΡΡΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΡΠΎΠΏΠ»ΠΈΠ²Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ Π±Π°Π·Ρ Π΄Π°Π½Π½ΡΡ
ΠΎΠ± ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠ°Ρ
ΠΠ·ΠΈΠ°ΡΡΠΊΠΎΠΉ Π ΠΎΡΡΠΈΠΈ, ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΡ
Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΌΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ Π°Π²ΡΠΎΡΡ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΡΠ΅Π½Π°ΡΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ Π ΠΎΡΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Π΄ΠΎ 2040 Π³. ΠΠ½ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΊΠ»ΡΡΠ΅Π²ΡΡ
ΠΌΠΎΠΌΠ΅Π½ΡΠ°Ρ
: ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π΅ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° ΠΈ Π·Π°ΡΡΠ°ΡΠ°Ρ
, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΡ
Π΄Π»Ρ ΠΈΡ
ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΡΠΈ ΡΡΠ΅Π½Π°ΡΠΈΡ: ΠΎΠΏΡΠΈΠΌΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ, Π±Π°Π·ΠΎΠ²ΡΠΉ ΠΈ ΠΏΠ΅ΡΡΠΈΠΌΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ. ΠΠ°Π·ΠΎΠ²ΡΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΎΡΡΠ°ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ, ΡΡΠΎ ΠΌΠΈΡΠΎΠ²ΡΠ΅ ΡΠ΅ΠΌΠΏΡ Π΄Π΅ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ Π±ΡΠ΄ΡΡ ΡΠ½ΠΈΠΆΠ΅Π½Ρ ΠΈ ΡΠ³ΠΎΠ»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠ° Π² Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ Π΄Π²Π°Π΄ΡΠ°ΡΠΈ Π»Π΅Ρ ΡΠΎΡ
ΡΠ°Π½ΠΈΡ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π² ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π±Π°Π»Π°Π½ΡΠ΅. Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π½Π°ΡΠΈΡ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΊΠ°ΡΠ΄ΠΈΠ½Π°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°, Π·Π°ΠΏΡΡΠΊΠΎΠΌ ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΠΉ Π³Π»ΡΠ±ΠΎΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ³Π»Ρ, Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΡΠΎΠ²ΡΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ² Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΡ
ΡΠ°Π½Ρ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡ ΡΠΊΡΠΏΠΎΡΡΠ½Π°Ρ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΡΠ³ΠΎΠ»ΡΠ½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² β ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ Π½Π° ΡΡΠ½ΠΎΠΊ ΠΠ·ΠΈΠ°ΡΡΠΊΠΎ-Π’ΠΈΡ
ΠΎΠΎΠΊΠ΅Π°Π½ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π°. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΠΎΠ·Π΄Π°Π΅ΡΡΡ ΡΡΠΈΠΌΡΠ» Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ Π² Π‘ΠΈΠ±ΠΈΡΠΈ ΠΈ Π½Π° ΠΠ°Π»ΡΠ½Π΅ΠΌ ΠΠΎΡΡΠΎΠΊΠ΅ ΡΡΡΠ°Π½Ρ, Π° Π³Π»Π°Π²Π½ΠΎΠ΅ β ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ Π² Π°Π·ΠΈΠ°ΡΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΈ Π ΠΎΡΡΠΈΠΈ ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΊΡΡΠΏΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠ·ΠΈΠ°ΡΡΠΊΠΎΠΉ Π ΠΎΡΡΠΈΠΈ
- β¦