269 research outputs found
Dynamical Friction on Star Clusters near the Galactic Center
Numerical simulations of the dynamical friction suffered by a star cluster
near the Galactic center have been performed with a parallelized tree code.
Gerhard (2001) has suggested that dynamical friction, which causes a cluster to
lose orbital energy and spiral in towards the galactic center, may explain the
presence of a cluster of very young stars in the central parsec, where star
formation might be prohibitively difficult owing to strong tidal forces. The
clusters modeled in our simulations have an initial total mass of 10^5-10^6
Msun and initial galactocentric radii of 2.5-30 pc. We have identified a few
simulations in which dynamical friction indeed brings a cluster to the central
parsec, although this is only possible if the cluster is either very massive
(~10^6 Msun), or is formed near the central parsec (<~ 5 pc). In both cases,
the cluster should have an initially very dense core (> 10^6 Msun pc-3). The
initial core collapse and segregation of massive stars into the cluster core,
which typically happens on a much shorter time scale than that characterizing
the dynamical inspiral of the cluster toward the Galactic center, can provide
the requisite high density. Furthermore, because it is the cluster core which
is most likely to survive the cluster disintegration during its journey
inwards, this can help account for the observed distribution of presumably
massive HeI stars in the central parsec.Comment: Accepted for publication in Ap
The effect of magnetic fields on star cluster formation
We examine the effect of magnetic fields on star cluster formation by
performing simulations following the self-gravitating collapse of a turbulent
molecular cloud to form stars in ideal MHD. The collapse of the cloud is
computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is
using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation
process, for magnetic fields with plasma beta < 1 the results are substantially
different to the hydrodynamic case. In these cases we find large-scale
magnetically-supported voids imprinted in the cloud structure; anisotropic
turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud.
We also find strongly suppressed accretion in the magnetised runs, leading to
up to a 75% reduction in the amount of mass converted into stars over the
course of the calculations and a more quiescent mode of star formation. There
is also some indication that the relative formation efficiency of brown dwarfs
is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version
with high-res figures + movies available from
http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm
Clumpy shocks as the driver of velocity dispersion in molecular clouds : the effects of self-gravity and magnetic fields
DHF and IAB gratefully acknowledge support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG.We revisit an alternate explanation for the turbulent nature of molecular clouds - namely, that velocity dispersions matching classical predictions of driven turbulence can be generated by the passage of clumpy material through a shock. While previous work suggested this mechanism can reproduce the observed Larson relation between velocity dispersion and size scale (Ï â LÎ with Î â 0.5), the effects of self-gravity and magnetic fields were not considered. We run a series of smoothed particle magnetohydrodynamics experiments, passing clumpy gas through a shock in the presence of a combination of self-gravity and magnetic fields.We find power-law relations between Ï and L throughout, with indices ranging from Î = 0.3-1.2. These results are relatively insensitive to the strength and geometry of magnetic fields, provided that the shock is relatively strong. Î is strongly sensitive to the angle between the gas' bulk velocity, and the shock front and the shock strength (compared to the gravitational boundness of the pre-shock gas). If the origin of the Ï-L relation is in clumpy shocks, deviations from the standard Larson relation constrain the strength and behaviour of shocks in spiral galaxies.Publisher PDFPeer reviewe
Observational Implications of Precessing Protostellar Discs and Jets
We consider the dynamics of a protostellar disc in a binary system where the
disc is misaligned with the orbital plane of the binary, with the aim of
determining the observational consequences for such systems. The disc wobbles
with a period approximately equal to half the binary's orbital period and
precesses on a longer timescale. We determine the characteristic timescale for
realignment of the disc with the orbital plane due to dissipation. If the
dissipation is determined by a simple isotropic viscosity then we find, in line
with previous studies, that the alignment timescale is of order the viscous
evolution timescale. However, for typical protostellar disc parameters, if the
disc tilt exceeds the opening angle of the disc, then tidally induced shearing
within the disc is transonic. In general, hydrodynamic instabilities associated
with the internally driven shear result in extra dissipation which is expected
to drastically reduce the alignment timescale. For large disc tilts the
alignment timescale is then comparable to the precession timescale, while for
smaller tilt angles , the alignment timescale varies as . We discuss the consequences of the wobbling, precession and
rapid realignment for observations of protostellar jets and the implications
for binary star formation mechanisms.Comment: MNRAS, in press. 10 pages. Also available at
http://www.ast.cam.ac.uk/~mbat
TMC-1C: an accreting starless core
We have mapped the starless core TMC-1C in a variety of molecular lines with
the IRAM 30m telescope. High density tracers show clear signs of
self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and
DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a
region of about 7,000 AU in radius around the dust continuum peak, which is the
most extended ``infalling'' region observed in a starless core with this
tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests
that their emission comes from a shell outside the colder interior traced by
the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to
~10 K away from the center. This is consistent with a volume density drop of
the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to
~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU).
The column density implied by the gas and dust show similar N2H+ and CO
depletion factors (f_D < 6). This can be explained with a simple scenario in
which: (i) the TMC-1C core is embedded in a relatively dense environment (H2
~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had
time to reach equilibrium values; (ii) the surrounding material (rich in CO and
N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than
3x10^5 yr, to account for the observed abundance of N2H+ across the core
(~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4
yr) or ``undepleted'' material from the surrounding envelope has fallen towards
it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure
Variations in Stellar Clustering with Environment: Dispersed Star Formation and the Origin of Faint Fuzzies
The observed increase in star formation efficiency with average cloud
density, from several percent in whole giant molecular clouds to ~30 or more in
cluster-forming cores, can be understood as the result of hierarchical cloud
structure if there is a characteristic density as which individual stars become
well defined. Also in this case, the efficiency of star formation increases
with the dispersion of the density probability distribution function (pdf).
Models with log-normal pdf's illustrate these effects. The difference between
star formation in bound clusters and star formation in loose groupings is
attributed to a difference in cloud pressure, with higher pressures forming
more tightly bound clusters. This correlation accounts for the observed
increase in clustering fraction with star formation rate and with the
observation of Scaled OB Associations in low pressure environments. ``Faint
fuzzie'' star clusters, which are bound but have low densities, can form in
regions with high Mach numbers and low background tidal forces. The proposal by
Burkert, Brodie & Larsen (2005) that faint fuzzies form at large radii in
galactic collisional rings, satisfies these constraints.Comment: 14 pages, 2 figures, ApJ, 672, January 10th 200
Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs
DHF, FGR-F and IAB gratefully acknowledge support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG.We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were 'spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic 'grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.PostprintPeer reviewe
Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures
We present the results of a 2.7 mm continuum interferometric survey of 24
young stellar objects in 11 fields. The target objects range from deeply
embedded Class 0 sources to optical T Tauri sources. This is the first
sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded
stellar systems. The images show a diversity of structure and complexity. The
optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae)
have continuum emission dominated by compact, less than 1", circumstellar
disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have
continuum emission that is extended and compact. The embedded sources (L1448
IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have
continuum emission dominated by the extended envelope, typically more than 85%.
In fact, in many of the deeply embedded systems it is difficult to uniquely
isolate the disk emission component from the envelope extending inward to AU
size scales. All of the target embedded objects are in multiple systems with
separations on scales of 30" or less. Based on the system separation, we place
the objects into three categories: separate envelope (separation > 6500 AU),
common envelope (separation 150-3000 AU), and common disk (separation < 100
AU). These three groups can be linked with fragmentation events during the star
formation process: separate envelopes from prompt initial fragmentation and the
separate collapse of a loosely condensed cloud, common envelopes from
fragmentation of a moderately centrally condensed spherical system, and common
disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte
Growth modes of InN (000-1) on GaN buffer layers on sapphire
In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesa-like with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered
- âŠ