2,474 research outputs found

    Single Mott Transition in Multi-Orbital Hubbard Model

    Get PDF
    The Mott transition in a multi-orbital Hubbard model involving subbands of different widths is studied within the dynamical mean field theory. Using the iterated perturbation theory for the quantum impurity problem it is shown that at low temperatures inter-orbital Coulomb interactions give rise to a single first-order transition rather than a sequence of orbital selective transitions. Impurity calculations based on the Quantum Monte Carlo method confirm this qualitative behavior. Nevertheless, at finite temperatures, the degree of metallic or insulating behavior of the subbands differs greatly. Thus, on the metallic side of the transition, the narrow band can exhibit quasi-insulating features, whereas on the insulating side the wide band exhibits pronounced bad-metal behavior. This complexity might partly explain contradictory results between several previous works.Comment: 8 pages, 11 figure

    Theory of optically forbidden d-d transitions in strongly correlated crystals

    Get PDF
    A general multiband formulation of linear and non-linear optical response functions for realistic models of correlated crystals is presented. Dipole forbidden d-d optical transitions originate from the vertex functions, which we consider assuming locality of irreducible four-leg vertex. The unified formulation for second- and third-order response functions in terms of the three-leg vertex is suitable for practical calculations in solids. We illustrate the general approach by consideration of intraatomic spin-flip contributions, with the energy of 2J, where J is a Hund exchange, in the simplest two-orbital model.Comment: 9 pages, 4 figures, to appear in J. Phys. Cond. Matte

    Nonlocal correlations in the vicinity of the α\alpha-γ\gamma phase transition in iron within a DMFT plus spin-fermion model approach

    Full text link
    We consider nonlocal correlations in iron in the vicinity of the α\alpha-γ\gamma phase transition within the spin-rotationally-invariant dynamical mean-field theory (DMFT) approach, combined with the recently proposed spin-fermion model of iron. The obtained nonlocal corrections to DMFT yield a decrease of the Curie temperature of the α\alpha phase, leading to an agreement with its experimental value. We show that the corresponding nonlocal corrections to the energy of the α\alpha phase are crucially important to obtain the proximity of energies of α\alpha and γ\gamma phases in the vicinity of the iron α\alpha-γ\gamma transformation.Comment: 5 pages, 2 figure

    Effect of density of states peculiarities on Hund's metal behavior

    Full text link
    We investigate a possibility of Hund's metal behavior in the Hubbard model with asymmetric density of states having peak(s). Specifically, we consider the degenerate two-band model and compare its results to the five-band model with realistic density of states of iron and nickel, showing that the obtained results are more general, provided that the hybridization between states of different symmetry is sufficiently small. We find that quasiparticle damping and the formation of local magnetic moments due to Hund's exchange interaction are enhanced by both, the density of states asymmetry, which yields stronger correlated electron or hole excitations, and the larger density of states at the Fermi level, increasing the number of virtual electron-hole excitations. For realistic densities of states these two factors are often interrelated because the Fermi level is attracted towards peaks of the density of states. We discuss the implication of the obtained results to various substances and compounds, such as transition metals, iron pnictides, and cuprates.Comment: 7 pages, 7 figure

    First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-field Theory

    Full text link
    A recently developed dynamical mean-field theory in the iterated perturbation theory approximation was used as a basis for construction of the "first principles" calculation scheme for investigating electronic structure of strongly correlated electron systems. This scheme is based on Local Density Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals (LMTO) method. The classical example of the doped Mott-insulator La_{1-x}Sr_xTiO_3 was studied by the new method and the results showed qualitative improvement in agreement with experimental photoemission spectra.Comment: 11 pages, 3 Postscript figures, LaTeX, submit in Journal of Physics: Condensed Matte

    Momentum-dependent susceptibilities and magnetic exchange in bcc iron from supercell DMFT calculations

    Full text link
    We analyze the momentum- and temperature dependences of the magnetic susceptibilities and magnetic exchange interaction in paramagnetic bcc iron by a combination of density functional theory and dynamical mean-field theory (DFT+DMFT). By considering a general derivation of the orbital-resolved effective model for spin degrees of freedom for Hund's metals, we relate momentum-dependent susceptibilities in the paramagnetic phase to the magnetic exchange. We then calculate non-uniform orbital-resolved susceptibilities at high-symmetry wave vectors by constructing appropriate supercells in the DMFT approach. Extracting the irreducible parts of susceptibilities with respect to Hund's exchange interaction, we determine the corresponding orbital-resolved exchange interactions, which are then interpolated to the whole Brillouin zone. Using the spherical model we estimate the temperature dependence of the resulting exchange between local moments.Comment: 18 pages, 6 figure
    corecore