7,644 research outputs found

    Magnetic adatom induced skyrmion-like spin texture in surface electron waves

    Get PDF
    When a foreign atom is placed on a surface of a metal, the surrounding sea of electrons responds screening the additional charge leading to oscillations or ripples. On surfaces, those electrons are sometimes confined to two-dimensional surface states, whose spin-degeneracy is lifted due to the Rashba effect arising from the spin-orbit interaction of electrons and the inversion asymmetric environment. It is believed that at least for a single adatom scanning tunneling microscopy measurements are insensitive to the Rashba splitting i.e. no signatures in the charge oscillations will be observed. Resting on scattering theory, we demonstrate that, if magnetic, one single adatom is enough to visualize the presence of the Rashba effect in terms of an induced spin-magnetization of the surrounding electrons exhibiting a twisted spin texture described as superposition of two skyrmionic waves of opposite chirality.Comment: 11 pages, 5 figures, accepted in Phys. Rev. Letter

    Design and throughput simulations of a hard x-ray split and delay line for the MID station at the European XFEL

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1741, 030010 (2016) and may be found at https://doi.org/10.1063/1.4952833.A hard X-ray Split and Delay Line (SDL) under development for the Materials Imaging and Dynamics (MID) station at the European X-Ray Free-Electron Laser (XFEL.EU) is presented. This device will provide pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV. Throughput simulations in the SASE case indicate a total transmission of 1.1% or 3.5% depending on the operation mode. In the self-seeded case of XFEL.EU operation simulations indicate that the transmission can be improved to more than 11%.BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamic

    Pumilio binds para mRNA and requires nanos and brat to regulate sodium current in drosophila motoneurons

    Get PDF
    Homeostatic regulation of ionic currents is of paramount importance during periods of synaptic growth or remodeling. Our previous work has identified the translational repressor Pumilio (Pum) as a regulator of sodium current (INa) and excitability in Drosophila motoneurons. In this current study, we show that Pum is able to bind directly the mRNA encoding the Drosophila voltage-gated sodium channel paralytic (para). We identify a putative binding site for Pum in the 3' end of the para open reading frame (ORF). Characterization of the mechanism of action of Pum, using whole-cell patch clamp and real-time reverse transcription-PCR, reveals that the full-length protein is required for translational repression of para mRNA. Additionally, the cofactor Nanos is essential for Pum-dependent para repression, whereas the requirement for Brain Tumor (Brat) is cell type specific. Thus, Pum-dependent regulation of INa in motoneurons requires both Nanos and Brat, whereas regulation in other neuronal types seemingly requires only Nanos but not Brat. We also show that Pum is able to reduce the level of nanos mRNA and as such identify a potential negative-feedback mechanism to protect neurons from overactivity of Pum. Finally, we show coupling between INa (para) and IK (Shal) such that Pum-mediated change in para results in a compensatory change in Shal. The identification of para as a direct target of Pum represents the first ion channel to be translationally regulated by this repressor and the location of the binding motif is the first example in an ORF rather than in the canonical 3'-untranslated region of target transcripts

    Traffic by multiple species of molecular motors

    Full text link
    We study the traffic of two types of molecular motors using the two-species symmetric simple exclusion process (ASEP) with periodic boundary conditions and with attachment and detachment of particles. We determine characteristic properties such as motor densities and currents by simulations and analytical calculations. For motors with different unbinding probabilities, mean field theory gives the correct bound density and total current of the motors, as shown by numerical simulations. For motors differing in their stepping probabilities, the particle-hole symmetry of the current-density relationship is broken and mean field theory fails drastically. The total motor current exhibits exponential finite-size scaling, which we use to extrapolate the total current to the thermodynamic limit. Finally, we also study the motion of a single motor in the background of many non-moving motors.Comment: 23 pages, 6 figures, late

    Theory of the Normal/Superfluid interface in population imbalanced Fermi gases

    Full text link
    We present a series of theoretical studies of the boundary between a superfluid and normal region in a partially polarized gas of strongly interacting fermions. We present mean-field estimates of the surface energy in this boundary as a function of temperature and scattering length. We discuss the structure of the domain wall, and use a previously introduced phenomonological model to study its influence on experimental observables. Our microscopic mean-field calculations are not consistent with the magnitude of the surface tension found from our phenomonological modelling of data from the Rice experiments. We conclude that one must search for novel mechanisms to explain the experiments.Comment: 15 pages, 9 figures (13 subfigures) -- v2: minor change

    Modelling of vorticity, sound and their interaction in two-dimensional superfluids

    Full text link
    Vorticity in two-dimensional superfluids is subject to intense research efforts due to its role in quantum turbulence, dissipation and the BKT phase transition. Interaction of sound and vortices is of broad importance in Bose-Einstein condensates and superfluid helium [1-4]. However, both the modelling of the vortex flow field and of its interaction with sound are complicated hydrodynamic problems, with analytic solutions only available in special cases. In this work, we develop methods to compute both the vortex and sound flow fields in an arbitrary two-dimensional domain. Further, we analyse the dispersive interaction of vortices with sound modes in a two-dimensional superfluid and develop a model that quantifies this interaction for any vortex distribution on any two-dimensional bounded domain, possibly non-simply connected, exploiting analogies with fluid dynamics of an ideal gas and electrostatics. As an example application we use this technique to propose an experiment that should be able to unambiguously detect single circulation quanta in a helium thin film.Comment: 23 pages, 8 figure

    Changing the Magnetic Configurations of Nanoclusters Atom-by-Atom

    Get PDF
    The Korringa-Kohn-Rostoker Green (KKR) function method for non-collinear magnetic structures was applied on Mn and Cr ad-clusters deposited on the Ni(111) surface. By considering various dimers, trimers and tetramers, a large amount of collinear and non-collinear magnetic structures is obtained. Typically all compact clusters have very small total moments, while the more open structures exhibit sizeable total moments, which is a result of the complex frustration mechanism in these systems. Thus, as the motion of a single adatom changes the cluster structure from compact to open and vice versa, this can be considered as a magnetic switch, which via the local exchange field of the adatom allows to switch the cluster moment on and off, and which might be useful for future nanosize information storage.Comment: 7 page

    Generalizing Tsirelson's bound on Bell inequalities using a min-max principle

    Full text link
    Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be derived from their maximal eigenvalues. This quantitative method enables detailed predictions of the maximal violations of Bell-type inequalities.Comment: 4 pages, 2 figures, RevTeX4, replaced with published versio

    Unified model for network dynamics exhibiting nonextensive statistics

    Full text link
    We introduce a dynamical network model which unifies a number of network families which are individually known to exhibit qq-exponential degree distributions. The present model dynamics incorporates static (non-growing) self-organizing networks, preferentially growing networks, and (preferentially) rewiring networks. Further, it exhibits a natural random graph limit. The proposed model generalizes network dynamics to rewiring and growth modes which depend on internal topology as well as on a metric imposed by the space they are embedded in. In all of the networks emerging from the presented model we find q-exponential degree distributions over a large parameter space. We comment on the parameter dependence of the corresponding entropic index q for the degree distributions, and on the behavior of the clustering coefficients and neighboring connectivity distributions.Comment: 11 pages 8 fig

    Testing the bounds on quantum probabilities

    Full text link
    Bounds on quantum probabilities and expectation values are derived for experimental setups associated with Bell-type inequalities. In analogy to the classical bounds, the quantum limits are experimentally testable and therefore serve as criteria for the validity of quantum mechanics.Comment: 9 pages, Revte
    • …
    corecore