We introduce a dynamical network model which unifies a number of network
families which are individually known to exhibit q-exponential degree
distributions. The present model dynamics incorporates static (non-growing)
self-organizing networks, preferentially growing networks, and (preferentially)
rewiring networks. Further, it exhibits a natural random graph limit. The
proposed model generalizes network dynamics to rewiring and growth modes which
depend on internal topology as well as on a metric imposed by the space they
are embedded in. In all of the networks emerging from the presented model we
find q-exponential degree distributions over a large parameter space. We
comment on the parameter dependence of the corresponding entropic index q for
the degree distributions, and on the behavior of the clustering coefficients
and neighboring connectivity distributions.Comment: 11 pages 8 fig