656 research outputs found

    Comment on "Are periodic solar wind number density structures formed in the solar corona?" by N. M. Viall et al., 2009, Geophys. Res. Lett., 36, L23102, doi:10.1029/2009GL041191

    Full text link
    Location of formation of periodic solar wind number density structures is discussed. Observation of proton and alpha anticorrelation in these structures [Viall et al., 2009] indicates that taking into account that bulk velocity of aplha-particles is higher than that of proton the place of formation for these structures should be located at distance less 0.002 AU from place of observation.Comment: 6 pages, submitted in GR

    Penggunaan Spreadsheet Dalam Menentukan Kapasitas Profil Baja Canai Dingin Berdasarkan Sni 7971:2013

    Full text link
    Baja canai dingin (cold-formed steel) sudah mulai banyak digunakan sebagai struktur bangunan sekarang ini, seperti gording, panel, dan dak. Jika dibandingkan dengan hot-rolled, baja canai dingin relatif lebih ringan serta cepat dan mudah pengkonstruksiannya. Namun dalam hal desain perencanaan di Indonesia, belum banyak panduan yang tersedia. Dengan terbitnya SNI 7971:2013 tentang struktur baja canai dingin, maka tujuan dari tugas akhir ini adalah membuat spreadsheet untuk beberapa profil baja canai dingin untuk menentukan kapasitas profil tarik, lentur, tekan konsentris, geser, tumpu, kombinasi lentur dan geser, kombinasi lentur dan tumpu, kombinasi aksial tekan dan lentur, serta kombinasi aksial tarik dan lentur yang sesuai dengan beban-beban yang terjadi. Hasil dari penelitian ini dapat digunakan untuk memilih profil yang tepat kapasitasnya sesuai dengan beban-beban rencana dengan lebih mudah dan cepat

    Bi-Stability, Hysteresis, and Memory of Voltage-Gated Lysenin Channels

    Get PDF
    Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks

    G-quadruplex RNA motifs influence gene expression in the malaria parasite Plasmodium falciparum.

    Get PDF
    Funder: Hong Kong PhD Fellowship SchemeFunder: Hong Kong Special Administrative Region GovernmentG-quadruplexes are non-helical secondary structures that can fold in vivo in both DNA and RNA. In human cells, they can influence replication, transcription and telomere maintenance in DNA, or translation, transcript processing and stability of RNA. We have previously showed that G-quadruplexes are detectable in the DNA of the malaria parasite Plasmodium falciparum, despite a very highly A/T-biased genome with unusually few guanine-rich sequences. Here, we show that RNA G-quadruplexes can also form in P. falciparum RNA, using rG4-seq for transcriptome-wide structure-specific RNA probing. Many of the motifs, detected here via the rG4seeker pipeline, have non-canonical forms and would not be predicted by standard in silico algorithms. However, in vitro biophysical assays verified formation of non-canonical motifs. The G-quadruplexes in the P. falciparum transcriptome are frequently clustered in certain genes and associated with regions encoding low-complexity peptide repeats. They are overrepresented in particular classes of genes, notably those that encode PfEMP1 virulence factors, stress response genes and DNA binding proteins. In vitro translation experiments and in vivo measures of translation efficiency showed that G-quadruplexes can influence the translation of P. falciparum mRNAs. Thus, the G-quadruplex is a novel player in post-transcriptional regulation of gene expression in this major human pathogen.UK Medical Research Council [grants MR/K000535/1 and MR/L008823/1] to CJM. Shenzhen Basic Research Project [JCYJ20180507181642811], Research Grants Council of the Hong Kong SAR, China Projects [CityU 11100421, CityU 11101519, CityU 11100218, N_CityU110/17, CityU 21302317], Croucher Foundation [Project No. 9500030, 9509003], State Key Laboratory of Marine Pollution Director Discretionary Fund, City University of Hong Kong [projects 6000711, 7005503, 9667222, 9680261] to CKK. A generous donation from Mr. and Mrs. Sunny Yang, the University Grants Committee Area of Excellence Scheme (AoE/M-403/16), and the Innovation and Technology Commission, Hong Kong Special Administrative Region Government to the State Key Laboratory of Agrobiotechnology (CUHK) to TFC. EYCC was supported by the Hong Kong PhD Fellowship Scheme

    Off-shell superconformal nonlinear sigma-models in three dimensions

    Full text link
    We develop superspace techniques to construct general off-shell N=1,2,3,4 superconformal sigma-models in three space-time dimensions. The most general N=3 and N=4 superconformal sigma-models are constructed in terms of N=2 chiral superfields. Several superspace proofs of the folklore statement that N=3 supersymmetry implies N=4 are presented both in the on-shell and off-shell settings. We also elaborate on (super)twistor realisations for (super)manifolds on which the three-dimensional N-extended superconformal groups act transitively and which include Minkowski space as a subspace.Comment: 67 pages; V2: typos corrected, one reference added, version to appear on JHE

    Modulation of Kv Channel Expression and Function by TCR and Costimulatory Signals during Peripheral CD4+ Lymphocyte Differentiation

    Get PDF
    Ionic signaling pathways, including voltage-dependent potassium (Kv) channels, are instrumental in antigen-mediated responses of peripheral T cells. However, how Kv channels cooperate with other signaling pathways involved in T cell activation and differentiation is unknown. We report that multiple Kv channels are expressed by naive CD4+ lymphocytes, and that the current amplitude and kinetics are modulated by antigen receptor–mediated stimulation and costimulatory signals. Currents expressed in naive CD4+ lymphocytes are consistent with Kv1.1, Kv1.2, Kv1.3, and Kv1.6. Effector CD4+ cells generated by optimal TCR and costimulation exhibit only Kv1.3 current, but at approximately sixfold higher levels than naive cells. CD4+ lymphocytes anergized through partial stimulation exhibit similar Kv1.1, Kv1.2, and/or Kv1.6 currents, but approximately threefold more Kv1.3 current than naive cells. To determine if Kv channels contribute to the distinct functions of naive, effector, and anergized T cells, we tested their role in immunoregulatory cytokine production. Each Kv channel is required for maximal IL-2 production by naive CD4+ lymphocytes, whereas none appears to play a role in IL-2, IL-4, or IFN-γ production by effector cells. Interestingly, Kv channels in anergized lymphocytes actively suppress IL-4 production, and these functions are consistent with a role in regulating the membrane potential and calcium signaling

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    Automorphic Instanton Partition Functions on Calabi-Yau Threefolds

    Full text link
    We survey recent results on quantum corrections to the hypermultiplet moduli space M in type IIA/B string theory on a compact Calabi-Yau threefold X, or, equivalently, the vector multiplet moduli space in type IIB/A on X x S^1. Our main focus lies on the problem of resumming the infinite series of D-brane and NS5-brane instantons, using the mathematical machinery of automorphic forms. We review the proposal that whenever the low-energy theory in D=3 exhibits an arithmetic "U-duality" symmetry G(Z) the total instanton partition function arises from a certain unitary automorphic representation of G, whose Fourier coefficients reproduce the BPS-degeneracies. For D=4, N=2 theories on R^3 x S^1 we argue that the relevant automorphic representation falls in the quaternionic discrete series of G, and that the partition function can be realized as a holomorphic section on the twistor space Z over M. We also offer some comments on the close relation with N=2 wall crossing formulae.Comment: 25 pages, contribution to the proceedings of the workshop "Algebra, Geometry and Mathematical Physics", Tjarno, Sweden, 25-30 October, 201

    CD8<sup>+</sup> T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver

    Get PDF
    Liver tissue-resident memory T (Trm) cells migrate throughout the sinusoids and are capable of protecting against malaria sporozoite challenge. To gain an understanding of liver Trm cell development, we examined various conditions for their formation. Although liver Trm cells were found in naive mice, their presence was dictated by antigen specificity and required IL-15. Liver Trm cells also formed after adoptive transfer of in vitro-activated but not naive CD8+ T cells, indicating that activation was essential but that antigen presentation within the liver was not obligatory. These Trm cells patrolled the liver sinusoids with a half-life of 36 days and occupied a large niche that could be added to sequentially without effect on subsequent Trm cell cohorts. Together, our findings indicate that liver Trm cells form as a normal consequence of CD8+ T cell activation during essentially any infection but that inflammatory and antigenic signals preferentially tailor their development. Holz et al. demonstrate that tissue-resident memory T (Trm) cells routinely develop in the liver after T cell activation. Within the liver, IL-15, antigen, and inflammation aid Trm cell formation, but only IL-15 is essential. Newly formed Trm cells do not displace existing populations, demonstrating a flexible liver niche

    Plasmodium berghei Hsp90 contains a natural immunogenic I-A<sup>b</sup>-restricted antigen common to rodent and human Plasmodium species

    Get PDF
    Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria
    corecore