2,689 research outputs found

    Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond

    Full text link
    The coherent behavior of the single electron and single nuclear spins of a defect center in diamond and a 13C nucleus in its vicinity, respectively, are investigated. The energy levels associated with the hyperfine coupling of the electron spin of the defect center to the 13C nuclear spin are analyzed. Methods of magnetic resonance together with optical readout of single defect centers have been applied in order to observe the coherent dynamics of the electron and nuclear spins. Long coherence times, in the order of microseconds for electron spins and tens of microseconds for nuclear spins, recommend the studied system as a good experimental approach for implementing a 2-qubit gate.Comment: 4 pages, 4 figure

    Casimir forces between arbitrary compact objects

    Full text link
    We develop an exact method for computing the Casimir energy between arbitrary compact objects, either dielectrics or perfect conductors. The energy is obtained as an interaction between multipoles, generated by quantum current fluctuations. The objects' shape and composition enter only through their scattering matrices. The result is exact when all multipoles are included, and converges rapidly. A low frequency expansion yields the energy as a series in the ratio of the objects' size to their separation. As an example, we obtain this series for two dielectric spheres and the full interaction at all separations for perfectly conducting spheres.Comment: 4 pages, 1 figur

    Graduate Quantum Mechanics Reform

    Full text link
    We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey. We find that graduate students respond well to research-based techniques that have been tested mainly in introductory courses, and that they learn much of the new content introduced in each version of the course. We also find that students' ability to answer conceptual questions about graduate quantum mechanics is highly correlated with their ability to solve calculational problems on the same topics. In contrast, we find that students' understanding of basic undergraduate quantum mechanics concepts at the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    Get PDF
    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals

    Vasodilator effect of glucagon: receptorial crosstalk among glucagon, GLP-1, and receptor for glucagon and GLP-1

    Get PDF
    Glucagon is known for its insulin-antagonist effect in the blood glucose homeostasis, while it also reduces vascular resistance. The mechanism of the vasoactive effect of glucagon has not been studied before; thereby we aimed to investigate the mediators involved in the vasodilatation induced by glucagon. The vasoactive effect of glucagon, insulin, and glucagon-like peptide-1 was studied on isolated rat thoracic aortic rings using a wire myograph. To investigate the mechanism of the vasodilatation caused by glucagon, we determined the role of the receptor for glucagon and the receptor for GLP-1, and studied also the effect of various inhibitors of gasotransmitters, inhibitors of reactive oxygen species formation, NADPH oxidase, prostaglandin synthesis, protein kinases, potassium channels, and an inhibitor of the Na(+)/Ca(2+)-exchanger. Glucagon causes dose-dependent relaxation in the rat thoracic aorta, which is as potent as that of insulin but greater than that of GLP-1 (7-36) amide. Vasodilatation by GLP-1 is partially mediated by the glucagon receptor. The vasodilatation due to glucagon evokes via the glucagon-receptor, but also via the receptor for GLP-1, and it is endothelium-independent. Contribution of gasotransmitters, prostaglandins, the NADPH oxidase enzyme, free radicals, potassium channels, and the Na(+)/Ca(2+)-exchanger is also significant. Glucagon causes dose-dependent relaxation of rat thoracic aorta in vitro, via the receptor for glucagon and the receptor for GLP-1, while the vasodilatation evoked by GLP-1 also evolves partially via the receptor for glucagon, thereby, a possible crosstalk between the 2 hormones and receptors could occur

    Industrial biotechnology of Pseudomonas putida: advances and prospects

    Get PDF
    Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory

    Simplified Quantum Process Tomography

    Full text link
    We propose and evaluate experimentally an approach to quantum process tomography that completely removes the scaling problem plaguing the standard approach. The key to this simplification is the incorporation of prior knowledge of the class of physical interactions involved in generating the dynamics, which reduces the problem to one of parameter estimation. This allows part of the problem to be tackled using efficient convex methods, which, when coupled with a constraint on some parameters allows globally optimal estimates for the Kraus operators to be determined from experimental data. Parameterising the maps provides further advantages: it allows the incorporation of mixed states of the environment as well as some initial correlation between the system and environment, both of which are common physical situations following excitation of the system away from thermal equilibrium. Although the approach is not universal, in cases where it is valid it returns a complete set of positive maps for the dynamical evolution of a quantum system at all times.Comment: Added references to interesting related work by Bendersky et a

    Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies

    Get PDF
    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin

    Inversion of Magnetic Measurements of the CHAMP Satellite Over the Pannonian Basin

    Get PDF
    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5 x 0.5, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude were downward continued to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks
    • …
    corecore