506 research outputs found

    Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study

    Get PDF
    Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while 12 underwent the sham treatment (control group–CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2–0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients

    Eddy covariance methane measurements at a Ponderosa pine plantation in California

    Get PDF
    Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows continuous flux measurements integrating over a larger and more representative area including the complete ecosystem, and allows fluxes to be observed as environmental conditions change naturally without disturbance. We deployed the closed-path Fast Methane analyzer (FMA) from Los Gatos Research Ltd and demonstrate its performance for EC measurements at a Ponderosa pine plantation at the Blodgett Forest site in central California. The fluctuations of the CH<sub>4</sub> concentration measured at 10 Hz appear to be small and their standard deviation is comparable to the magnitude of the signal noise (±5 ppbv). Consequently, the power spectra typically have a white noise signature at the high frequency end (a slope of +1). Nevertheless, in the frequency range important for turbulent exchange, the cospectra of CH<sub>4</sub> compare very well with all other scalar cospectra confirming the quality of the FMA measurements are good for the EC technique. We furthermore evaluate the complications of combined open and closed-path measurements when applying the Webb-Pearman-Leuning (WPL) corrections (Webb et al., 1980) and the consequences of a phase lag between the water vapor and methane signal inside the closed path system. The results of diurnal variations of CH<sub>4</sub> concentrations and fluxes are summarized and compared to the monthly results of process-based model calculations

    Gut microbiota profile in CDKL5 deficiency disorder patients

    Get PDF
    : CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by global developmental delay, early-onset seizures, intellectual disability, visual and motor impairments. Unlike Rett Syndrome (RTT), CDD lacks a clear regression period. Patients with CDD frequently encounter gastrointestinal (GI) disturbances and exhibit signs of subclinical immune dysregulation. However, the underlying causes of these conditions remain elusive. Emerging studies indicate a potential connection between neurological disorders and gut microbiota, an area completely unexplored in CDD. We conducted a pioneering study, analyzing fecal microbiota composition in individuals with CDD (n = 17) and their healthy relatives (n = 17). Notably, differences in intestinal bacterial diversity and composition were identified in CDD patients. In particular, at genus level, CDD microbial communities were characterized by an increase in the relative abundance of Clostridium_AQ, Eggerthella, Streptococcus, and Erysipelatoclostridium, and by a decrease in Eubacterium, Dorea, Odoribacter, Intestinomonas, and Gemmiger, pointing toward a dysbiotic profile. We further investigated microbiota changes based on the severity of GI issues, seizure frequency, sleep disorders, food intake type, impairment in neuro-behavioral features and ambulation capacity. Enrichment in Lachnoclostridium and Enterobacteriaceae was observed in the microbiota of patients with more severe GI symptoms, while Clostridiaceae, Peptostreptococcaceae, Coriobacteriaceae, Erysipelotrichaceae, Christensenellaceae, and Ruminococcaceae were enriched in patients experiencing daily epileptic seizures. Our findings suggest a potential connection between CDD, microbiota and symptom severity. This study marks the first exploration of the gut-microbiota-brain axis in subjects with CDD. It adds to the growing body of research emphasizing the role of the gut microbiota in neurodevelopmental disorders and opens doors to potential interventions that target intestinal microbes with the aim of improving the lives of patients with CDD

    CD73 expression and clinical significance in human metastatic melanoma.

    Get PDF
    CD73 is an ectoenzyme involved in the production of adenosine. It exerts immunosuppressive and protumoral roles and has emerged as a potential immuno-oncology target. CD73 expression was detected in TC in 54% of melanoma metastases, involving < 50% TC in the majority of the cases, with variable intensity. CD73 expression was significantly associated with a lower Breslow's depth of the primary lesion and was more frequent in patients having received prior non-surgical therapies. In an adjusted analysis, CD73 expression in TC (H-score > 37.5 or intensity > 1) significantly correlated to decreased overall survival (OS) from biopsy. Of the samples containing TIMC, 35% presented CD73+ TIMC. Highly infiltrated tumors were more likely to contain CD73+ TIMC. CD73 expression in TIMC (percentage ≥1%) significantly correlated with improved OS from biopsy. Immunohistochemistry detected CD73 expression in more than half of metastatic melanomas. While CD73 expression in TC significantly correlated with decreased OS, CD73 expression in TIMC significantly associated with improved OS. These results encourage the study of anti-CD73 therapies for metastatic melanoma patients. CD73 expression was assessed by immunohistochemistry in metastatic melanomas from 114 patients. Immunostainings were evaluated in tumor cells (TC) (percentage, intensity (1-3) and H-score) and in tumor-infiltrating mononuclear cells (TIMC) (percentage)

    Investigating Employees’ Concerns and Wishes Regarding Digital Stress Management Interventions With Value Sensitive Design: Mixed Methods Study

    Full text link
    Background: Work stress places a heavy economic and disease burden on society. Recent technological advances include digital health interventions for helping employees prevent and manage their stress at work effectively. Although such digital solutions come with an array of ethical risks, especially if they involve biomedical big data, the incorporation of employees' values in their design and deployment has been widely overlooked. Objective: To bridge this gap, we used the value sensitive design (VSD) framework to identify relevant values concerning a digital stress management intervention (dSMI) at the workplace, assess how users comprehend these values, and derive specific requirements for an ethics-informed design of dSMIs. VSD is a theoretically grounded framework that front-loads ethics by accounting for values throughout the design process of a technology. Methods: We conducted a literature search to identify relevant values of dSMIs at the workplace. To understand how potential users comprehend these values and derive design requirements, we conducted a web-based study that contained closed and open questions with employees of a Swiss company, allowing both quantitative and qualitative analyses. Results: The values health and well-being, privacy, autonomy, accountability, and identity were identified through our literature search. Statistical analysis of 170 responses from the web-based study revealed that the intention to use and perceived usefulness of a dSMI were moderate to high. Employees' moderate to high health and well-being concerns included worries that a dSMI would not be effective or would even amplify their stress levels. Privacy concerns were also rated on the higher end of the score range, whereas concerns regarding autonomy, accountability, and identity were rated lower. Moreover, a personalized dSMI with a monitoring system involving a machine learning-based analysis of data led to significantly higher privacy (P=.009) and accountability concerns (P=.04) than a dSMI without a monitoring system. In addition, integrability, user-friendliness, and digital independence emerged as novel values from the qualitative analysis of 85 text responses. Conclusions: Although most surveyed employees were willing to use a dSMI at the workplace, there were considerable health and well-being concerns with regard to effectiveness and problem perpetuation. For a minority of employees who value digital independence, a nondigital offer might be more suitable. In terms of the type of dSMI, privacy and accountability concerns must be particularly well addressed if a machine learning-based monitoring component is included. To help mitigate these concerns, we propose specific requirements to support the VSD of a dSMI at the workplace. The results of this work and our research protocol will inform future research on VSD-based interventions and further advance the integration of ethics in digital health

    The prevention of analgesic opioids abuse: expert opinion

    Get PDF
    Opioids are drugs of reference for the treatment of moderate to severe pain. Their proper use and a periodic assessment of the patient are crucial to prevent misuse. A multidisciplinary group suggests strategies for all stakeholders involved in the management of pain and suggests the importance of the doctor-patient relationship

    The integrated engineering design concept of the upper limiter within the EU-DEMO LIMITER system

    Get PDF
    The EU-DEMO first wall protection relies on a system of limiters. Although they are primarily designed for facing the energy released by a limited plasma during transients, their design should safely withstand a combination of loads relevant for in-vessel components (IVCs) during steady-state operation. They are not meant to breed tritium, nor to provide plasma stability. However, sitting in place of blanket portions, they should ensure an adequate shielding function to vacuum vessel and magnets while withstanding both their dead weight and the electro-mechanical loads arising from the interaction between current induced in the conductive structure and magnetic field. During plasma disruptions they will be subjected to halo currents flowing from/to the plasma and the grounded structures, whose effects must be added to the eddy current ones. Disruption-induced electro-mechanical loads are hence IVC design-driving, despite the uncertainties in both eddy and halo currents’ magnitude and distribution, which depend on IVC design, electrical connectivity, plasma temperature and halo width. The integrated design of the limiter is made of two actively water-cooled sub-components: the Plasma-Facing Wall (PFW) directly exposed to the plasma, and the Shielding Block (SB) devoted to hold the PFW while providing neutronic shielding. The PFW design is driven by disruptive heat loads. Disruption-induced electro-magnetic loads are instead SB design drivers, meaning that the design details (i.e. geometry, electrical connections, attachments) affect the loads acting on it, which, in turn, are affected by the mechanical response of the structure. The present paper describes the design workflow and assessment of the Upper Limiter (UL), resulting from a close and iterative synergy among different fields. Built on static-structural and energy balance hand calculations based on, respectively, preliminary electro-magnetic and neutronic loads, the UL integrated design performance has then been verified against electro-magnetic, neutronic, thermal-hydraulic and structural assessment under the above-mentioned load combination. The outcome will be taken as reference for future limiter engineering designs

    Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components

    Get PDF
    The recently reported finding that plant matter and living plants produce significant amounts of the important greenhouse gas methane under aerobic conditions has led to an intense scientific and public controversy. Whereas some studies question the up-scaling method that was used to estimate the global source strength, others have suggested that experimental artifacts could have caused the reported signals, and two studies, one based on isotope labeling, have recently reported the absence of CH<sub>4</sub> emissions from plants. Here we show – using several independent experimental analysis techniques – that dry and detached fresh plant matter, as well as several structural plant components, emit significant amounts of methane upon irradiation with UV light and/or heating. Emissions from UV irradiation are almost instantaneous, indicating a direct photochemical process. Long-time irradiation experiments demonstrate that the size of the CH<sub>4</sub> producing reservoir is large, exceeding potential interferences from degassing or desorption processes by several orders of magnitude. A dry leaf of a pure <sup>13</sup>C plant produces <sup>13</sup>CH<sub>4</sub> at a similar rate as dry leaves of non-labeled plants produce non-labeled methane

    Methane flux, vertical gradient and mixing ratio measurements in a tropical forest

    Get PDF
    Measurements of CH<sub>4</sub> mixing ratio, vertical gradients and turbulent fluxes were carried out in a tropical forest (Reserva Biológica Cuieiras), about 60 km north of Manaus, Brazil. The methane mixing ratio and flux measurements were performed at a height of 53 m (canopy height 35 m). In addition, vertical CH<sub>4</sub> gradients were measured within the canopy using custom made air samplers at levels of 2, 16 and 36 m above ground. The methane gradients within the canopy reveal that there is a continuous methane source at the surface. No clear evidence for aerobic methane emission from the canopy was found. The methane fluxes above the canopy are small but consistently upwards with a maximum early in the morning. The measured fluxes are in agreement with the observed CH<sub>4</sub> gradient in the canopy. In the morning hours, a strong canopy venting peak is observed for both CH<sub>4</sub> and CO<sub>2</sub>, but for CO<sub>2</sub> this peak is then superimposed by photosynthetic uptake, whereas the peak lasts longer for CH<sub>4</sub>. Monthly averaged diurnal cycles of the CH<sub>4</sub> mixing ratio show a decrease during daytime and increase during nighttime. The magnitude of the difference in CH<sub>4</sub> mixing ratio between day and night gradually increases throughout the wet season. The fluxes required to explain the nighttime increase are in agreement with the nighttime fluxes measured above the canopy, which implies that the CH<sub>4</sub> increase in the nighttime boundary layer originates from local sources

    Extended Adjuvant Endocrine Treatment in Luminal Breast Cancers in the Era of Genomic Tests

    Get PDF
    In patients with early-stage endocrine receptor-positive (ER+) breast cancer (BC), adjuvant endocrine therapy (ET) for 5 years is the standard of care. However, for some patients, the risk of recurrence remain high for up to 15 years after diagnosis and extended ET beyond 5 years may be a reasonable option. Nevertheless, this strategy significantly increases the occurrence of side effects. Here we summarize the available evidence from randomized clinical trials on the efficacy and safety profile of extended ET and discuss available clinical and genomic tools helpful to select eligible patients in daily clinical practice
    corecore