121 research outputs found

    Retinoic acid accelerates the specification of enteric neural progenitors from in-vitro-derived neural crest

    Get PDF
    The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS

    Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives

    Get PDF
    The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFβ-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities

    Management of preterm labor: Clinical practice guideline and recommendation by the WAPM-World Association of Perinatal Medicine and the PMF-Perinatal Medicine Foundation

    Get PDF
    : This practice guideline follows the mission of the World Association of Perinatal Medicine in collaboration with the Perinatal Medicine Foundation, bringing together groups and individuals throughout the world, with the goal of improving the management of preterm labor. In fact, this document provides further guidance for healthcare practitioners on the appropriate use of examinations with the aim to improve the accuracy in diagnosing preterm labor and allow timely and appropriate administration of tocolytics, antenatal corticosteroids and magnesium sulphate and avoid unnecessary or excessive interventions. Therefore, it is not intended to establish a legal standard of care. This document is based on consensus among perinatal experts throughout the world in the light of scientific literature and serves as a guideline for use in clinical practice

    Retinoic Acid Accelerates the Specification of Enteric Neural Progenitors from In-Vitro-Derived Neural Crest

    Get PDF
    The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS. In this article, Frith and colleagues show that retinoic acid (RA) signaling alters the axial identity of hPSC-derived neural crest cells in a time- and dose-dependent manner. They utilized this to derive enteric nervous system (ENS) proge

    Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

    Get PDF
    The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control

    Review of available national guidelines for obstetric anal sphincter injury.

    Get PDF
    INTRODUCTION AND HYPOTHESIS: Obstetric anal sphincter injuries (OASIs) are the most severe form of perineal trauma with potentially devastating effects on a mother's quality of life. There are various national guidelines available for their management. The aim of this study was to review and compare recommendations from published national guidelines regarding management and prevention of OASI. METHODS: We searched the PUBMED, EMBASE, MEDLINE, CINAHL and COCHRANE databases from January 2008 till October 2019 using relevant Medical Subject Headings (MeSH), including all subheadings. The guideline characteristics were mapped and methodological quality assessed with the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool by three independent reviewers. To compare the methodological quality of the guidelines, the interpretation of the six domain scores were taken into consideration. By consensus of the authors, a score of 70% was taken as a cut-off, and scores above this were considered 'high quality'. RESULTS: Thirteen national guidelines on perineal trauma were included and analysed. Nine of these were specific to OASI. There is wide variation in methodological quality and evidence used for recommendations. AGREE scores for overall guideline assessment were > 70% in eight of the guidelines, with Australia-Queensland, Canada, the UK and USA scoring highest. CONCLUSIONS: The wide variation in methodological quality and evidence used for recommendations suggests that there is a need for an agreed international guideline. This will enable healthcare practitioners to follow the same recommendations, with the most recent evidence, and provide evidence-based care to all women globally

    Sestrin2 Modulates AMPK Subunit Expression and Its Response to Ionizing Radiation in Breast Cancer Cells

    Get PDF
    Background: The sestrin family of stress-responsive genes (SESN1-3) are suggested to be involved in regulation of metabolism and aging through modulation of the AMPK-mTOR pathway. AMP-activated protein kinase (AMPK) is an effector of the tumour suppressor LKB1, which regulates energy homeostasis, cell polarity, and the cell cycle. SESN1/2 can interact directly with AMPK in response to stress to maintain genomic integrity and suppress tumorigenesis. Ionizing radiation (IR), a widely used cancer therapy, is known to increase sestrin expression, and acutely activate AMPK. However, the regulation of AMPK expression by sestrins in response to IR has not been studied in depth. Methods and Findings: Through immunoprecipitation we observed that SESN2 directly interacted with the AMPKa1b1c1 trimer and its upstream regulator LKB1 in MCF7 breast cancer cells. SESN2 overexpression was achieved using a Flag-tagged SESN2 expression vector or a stably-integrated tetracycline-inducible system, which also increased AMPKa1 and AMPKb1 subunit phosphorylation, and co-localized with phosphorylated AMPKa-Thr127 in the cytoplasm. Furthermore, enhanced SESN2 expression increased protein levels of LKB1 and AMPKa1b1c1, as well as mRNA levels of LKB1, AMPKa1, and AMPKb1. Treatment of MCF7 cells with IR elevated AMPK expression and activity, but this effect was attenuated in the presence of SESN2 siRNA. In addition, elevated SESN2 inhibited IR-induced mTOR signalling and sensitized MCF7 cells to IR through an AMPK-dependent mechanism

    In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity

    Get PDF
    Cells of the spinal cord and somites arise from shared, dual-fated precursors, located towards the posterior of the elongating embryo. Here we show that these neuromesodermal progenitors (NMPs) can readily be generated in vitro from mouse and human pluripotent stem cells by activating Wnt and Fgf signalling, timed to emulate in vivo development. Similar to NMPs in vivo, these cells co-express the neural factor Sox2 and the mesodermal factor Brachyury and differentiate into neural and paraxial mesoderm in vitro and in vivo. The neural cells produced by NMPs have spinal cord but not anterior neural identity and can differentiate into spinal cord motor neurons. This is consistent with the shared origin of spinal cord and somites and the distinct ontogeny of the anterior and posterior nervous system. Systematic analysis of the transcriptome during differentiation identifies the molecular correlates of each of the cell identities and the routes by which they are obtained. Moreover, we take advantage of the system to provide evidence that Brachyury represses neural differentiation and that signals from mesoderm are not necessary to induce the posterior identity of spinal cord cells. This indicates that the mesoderm inducing and posteriorising functions of Wnt signalling represent two molecularly separate activities. Together the data illustrate how reverse engineering normal developmental mechanisms allows the differentiation of specific cell types in vitro and the analysis of previous difficult to access aspects of embryo development
    • …
    corecore