7,572 research outputs found

    Collective excitations of a trapped degenerate Fermi gas

    Full text link
    We evaluate the small-amplitude excitations of a spin-polarized vapour of Fermi atoms confined inside a harmonic trap. The dispersion law ω=ωf[l+4n(n+l+2)/3]1/2\omega=\omega_{f}[l+4n(n+l+2)/3]^{1/2} is obtained for the vapour in the collisional regime inside a spherical trap of frequency ωf\omega_{f}, with nn the number of radial nodes and ll the orbital angular momentum. The low-energy excitations are also treated in the case of an axially symmetric harmonic confinement. The collisionless regime is discussed with main reference to a Landau-Boltzmann equation for the Wigner distribution function: this equation is solved within a variational approach allowing an account for non-linearities. A comparative discussion of the eigenmodes of oscillation for confined Fermi and Bose vapours is presented in an Appendix.Comment: 14 pages, no figures, accepted for publication in Eur.Phys.Jour.

    Calibration of Parallel Kinematic Machines: theory and applications

    Get PDF
    Introduction As already stated in the chapter addressing the calibration of serial manipulators, kinematic calibration is a procedure for the identification and the consequent compensation of the geometrical pose errors of a robot. This chapter extends the discussion to Parallel Manipulators (also called PKM Parallel Kinematic Machines). As described in the following (Section 2) this extension is not obvious but requires special care. Although for serial manipulators some procedures for the calibration based on automatic generation of a MCPC (Minimum Complete Parametrically Continuos) model exist, for PKMs only methodologies for individual manipulators have been proposed but a general strategy has not been presented since now. A few examples of the numerous approaches for the calibration of individual PKMs are proposed in (Parenti-Castelli & Di Gregorio, 1995), (Jokiel et al., 2000) for direct calibration and (Neugebauer et al., 1999), (Smollett, 1996) for indirect or self calibration techniques. This paper makes one significant step integrating available results with new ones and reordering them in simple rules that can be automatically applied to any PKM with general kinematic chains. In all the cases a MCPC kinematic model for geometrical calibration is automatically obtained. In Section 2 the main features of PKMs calibration is pointed out and the total number of the necessary parameters is determined; this is an original contribution. In Sections 3 and 4 two novel approaches for the generation of a MCPC model are described. Sections 5 and 6 are dedicated to the analysis of the singular cases and to the procedure for the elimination of the redundant parameters respectively; actual cases are discussed. Section 7 presents several examples of application of the two proposed procedures to many existing PKMs. Section 8 eventually draws the conclusions

    Anomalous RR Lyrae stars(?). III. CM Leonis

    Get PDF
    Time series of B,V,I CCD photometry and radial velocity measurements from high resolution spectroscopy (R=30,000) covering the full pulsation cycle are presented for the field RR Lyrae star CM Leonis. The photometric data span a 6 year interval from 1994 to 1999, and allow us to firmly establish the pulsation mode and periodicity of the variable. The derived period P=0.361699 days (+/- 0.000001) is very close to the value published in the Fourth Edition of the General Catalogue of Variable Stars (P=0.361732 days). However, contrary to what was previously found, the amplitude and shape of the light curve qualify CM Leo as a very regular first overtone pulsator with a prominent hump on the rising branch of its multicolour light curves. According to an abundace analysis performed on three spectra taken near minimum light (0.42 < phase < 0.61), CM Leo is a metal-poor star with metal abundance [Fe/H]=-1.93 +/- 0.20. The photometric and radial velocity curves of CM Leo have been compared with the predictions of suitable pulsational models to infer tight constraints on the stellar mass, effective temperature, and distance modulus of the star. We derive a true distance modulus of CM Leo of (m-M)0=13.11 +/- 0.02 mag and a corresponding absolute magnitude of Mv=0.47 +/- 0.04. This absolute magnitude, once corrected for evolutionary and metallicity effects, leads to a true distance modulus of the Large Magellanic Cloud of (m-M)0=18.43 +/- 0.06 mag, in better agreement with the long astronomical distance scale.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Experiment Investigating the Connection between Weak Values and Contextuality

    Get PDF
    Weak value measurements have recently given rise to a large interest for both the possibility of measurement amplification and the chance of further quantum mechanics foundations investigation. In particular, a question emerged about weak values being proof of the incompatibility between Quantum Mechanics and Non-Contextual Hidden Variables Theories (NCHVT). A test to provide a conclusive answer to this question was given in [M. Pusey, Phys. Rev. Lett. 113, 200401 (2014)], where a theorem was derived showing the NCHVT incompatibility with the observation of anomalous weak values under specific conditions. In this paper we realize this proposal, clearly pointing out the strict connection between weak values and the contextual nature of Quantum Mechanics.Comment: 5 pages, 4 figure

    Investigation of the influence of irradiation on Structural properties of AlN ceramics

    Get PDF
    One of the essential tasks of modern materials science is the studying of the interaction of various types of ionizing radiation with structural materials that have a promising application in reactor engineering [1-3]. Moreover, the creation of new radiation-resistant materials must take into account the effect of ionizing radiation on the resistance to defects formation in the structure and their subsequent evolution, which can lead to deterioration in operational properties of materials. Also, the energy losses of incident ions in matter directly affect defects formation in ceramic materials. Ionizing radiation can initiate dynamic processes associated with the violation of the atomic structure of ceramics, as well as the formation of metastable phases that can lead to partial amorphization and structural failure. The appearance of new metastable phases and the subsequent amorphization of the structure are the most common effects in irradiation of ceramic materials: AlN, TiO2, Si3N4, and SrO2

    Multi-Epoch HST Observations of IZw18: Characterization of Variable Stars at Ultra-Low Metallicities

    Full text link
    Variable stars have been identified for the first time in the very metal-poor Blue Compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W)time-series photometry obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We detected 34 candidate variable stars in the galaxy. We classify three of them as Classical Cepheids, with periods of 8.71, 125.0 and 130.3 days, respectively, and other two as long period variables with periodicities longer than a hundred days. These are the lowest metallicity Classical Cepheids known so far, thus providing the opportunity to explore and fit models of stellar pulsation fo Classical Cepheids at previously inaccessible metallicities. The period distribution of the confirmed Cepheids is markedly different from what is seen in other nearby galaxies, which is likely related to the star bursting nature of IZw18. By applying to the 8.71 days Cepheid theoretical Wesenheit (V,I) relations based on new pulsation models of Classical Cepheids specifically computed for the extremely low metallicity of this galaxy (Z=0.0004, Y=0.24), we estimate the distance modulus of IZw18 to be mu_0= 31.4pm0.2 D=19.0^{+1.8}_{-1.7}Mpc) for canonical models of Classical Cepheids, and of 31.2pm0.2 mag (D=17.4^{+1.6}_{-1.6}Mpc) using over luminous models. The theoretical modeling of the star's light curves provides mu_0=31.4pm0.1 mag, D=19.0^{+0.9}_{-0.9} Mpc, in good agreement with the results from the theoretical Wesenheit relations. These pulsation distances bracket the distance of 18.2pm1.5Mpc inferred by Aloisi et al. (2007) using the galaxy's Red Giant Branch Tip.Comment: 13 Pages, 6 Figures, accepted, Ap

    Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    Full text link
    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.Comment: 10 pages, 3 figures, 1 Table, submitted to Phys. Rev. on July 25th 200
    corecore