190 research outputs found

    Photoinduced charge separation in Q1D heterojunction materials: Evidence for electron-hole pair separation in mixed-halide MXMX solids

    Full text link
    Resonance Raman experiments on doped and photoexcited single crystals of mixed-halide MXMX complexes (MM=Pt; XX=Cl,Br) clearly indicate charge separation: electron polarons preferentially locate on PtBr segments while hole polarons are trapped within PtCl segments. This polaron selectivity, potentially very useful for device applications, is demonstrated theoretically using a discrete, 3/4-filled, two-band, tight-binding, extended Peierls-Hubbard model. Strong hybridization of the PtCl and PtBr electronic bands is the driving force for separation.Comment: n LaTeX, figures available by mail from JTG ([email protected]

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level

    Full text link
    A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.Comment: 14 pages, 8 figures. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103, P.4.13, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes

    Full text link
    Aiming to settle the controversial observations for halogen-bridged binuclear transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well as quantum, phase transitions are investigated with particular emphasis on the competition between electron itinerancy, electron-phonon interaction and electron-electron correlation. Recently observed distinct thermal behaviors of two typical MMX compounds Pt_2(CH_3CS_2)_4I and (NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001

    Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB- and dopamine D1 receptor-dependent mechanism

    Get PDF
    Shati/Nat8L significantly increased in the nucleus accumbens (NAc) of mice after repeated methamphetamine (METH) treatment. We reported that Shati/Nat8L overexpression in mouse NAc attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference. We recently found that Shati/Nat8L overexpression in NAc regulates the dopaminergic neuronal system via the activation of group II mGluRs by elevated Nacetylaspartylglutamate following N-acetylaspartate increase due to the overexpression. These findings suggest that Shati/Nat8L suppresses METH-induced responses. However, the mechanism by which METH increases the Shati/Nat8L mRNA expression in NAc is unclear. To investigate the regulatory mechanism of Shati/Nat8L mRNA expression, we performed a mouse Shati/Nat8L luciferase assay using PC12 cells. Next, we investigated the response of METH to Shati/Nat8L expression and CREB activity using mouse brain slices of NAc, METH administration to mice, and western blotting for CREB activity of specific dopamine receptor signals in vivo and ex vivo. We found that METH activates CREB binding to the Shati/Nat8L promoter to induce the Shati/Nat8L mRNA expression. Furthermore, the dopamine D1 receptor antagonist SCH23390, but not the dopamine D2 receptor antagonist sulpiride, inhibited the upregulation of Shati/Nat8L and CREB activities in the mouse NAc slices. Thus, the administration of the dopamine D1 receptor agonist SKF38393 increased the Shati/Nat8L mRNA expression in mouse NAc. These results showed that the Shati/ Nat8L mRNA was increased by METH-induced CREB pathway via dopamine D1 receptor signaling in mouse NAc. These findings may contribute to development of a clinical tool for METH addiction

    Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes

    Full text link
    Motivated by recent stimulative observations in halogen (X)-bridged binuclear transition-metal (M) complexes, which are referred to as MMX chains, we study solitons in a one-dimensional three-quarter-filled charge-density-wave system with both intrasite and intersite electron-lattice couplings. Two distinct ground states of MMX chains are reproduced and the soliton excitations on them are compared. In the weak-coupling region, all the solitons are degenerate to each other and are uniquely scaled by the band gap, whereas in the strong-coupling region, they behave differently deviating from the scenario in the continuum limit. The soliton masses are calculated and compared with those for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn. 71, No. 1 (2002

    Characterization of halogen-bridged binuclear metal complexes as hybridized two-band materials

    Full text link
    We study the electronic structure of halogen-bridged binuclear metal (MMX) complexes with a two-band Peierls-Hubbard model. Based on a symmetry argument, various density-wave states are derived and characterized. The ground-state phase diagram is drawn within the Hartree-Fock approximation, while the thermal behavior is investigated using a quantum Monte Carlo method. All the calculations conclude that a typical MMX compound Pt_2(CH_3CS_2)_4I should indeed be regarded as a d-p-hybridized two-band material, where the oxidation of the halogen ions must be observed even in the ground state, whereas another MMX family (NH_4)_4[Pt_2(P_2O_5H_2)_4X] may be treated as single-band materials.Comment: 16 pages, 11 figures embedded, to be published in Phys. Rev.
    corecore