223 research outputs found

    New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller–Tucker–Zemlin constraints

    Get PDF
    Cataloged from PDF version of article.Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Minimum Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, we develop new formulations for HMST. The formulations are based on Miller–Tucker–Zemlin (MTZ) subtour elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topologyenforcing constraints. We also compare the proposed models with the MTZ-based models in the literature with respect to linear programming relaxation bounds and solution times. The results indicate that the new models give considerably better bounds and solution times than their counterparts in the literature and that the new set of constraints is competitive with liftings to MTZ constraints, some of which are based on well-known, strong liftings of Desrochers and Laporte (1991). 2011 Elsevier B.V. All rights reserved

    Optimization of transportation requirements in the deployment of military units

    Get PDF
    Cataloged from PDF version of article.We study the deployment planning problem (DPP) that may roughly be defined as the problem of the planning of the physical movement of military units, stationed at geographically dispersed locations, from their home bases to their designated destinations while obeying constraints on scheduling and routing issues as well as on the availability and use of various types of transportation assets that operate on a multimodal transportation network. The DPP is a large-scale real-world problem for which analytical models do not exist.We propose a model for solving the problem and develop a solution methodology which involves an effective use of relaxation and restriction that significantly speeds up a CPLEX-based branch-and-bound. The solution times for intermediate-sized problems are around 1 h at maximum, whereas it takes about a week in the Turkish Armed Forces to produce a suboptimal feasible solution based on trial-and-error methods. The proposed model can be used to evaluate and assess investment decisions in transportation infrastructure and transportation assets as well as to plan and execute cost-effective deployment operations at different levels of planning. 2005 Elsevier Ltd. All rights reserved

    New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints

    Get PDF
    Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Minimum Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, we develop new formulations for HMST. The formulations are based on Miller-Tucker-Zemlin (MTZ) subtour elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topology-enforcing constraints. We also compare the proposed models with the MTZ-based models in the literature with respect to linear programming relaxation bounds and solution times. The results indicate that the new models give considerably better bounds and solution times than their counterparts in the literature and that the new set of constraints is competitive with liftings to MTZ constraints, some of which are based on well-known, strong liftings of Desrochers and Laporte (1991). © 2011 Elsevier B.V. All rights reserved

    Optimization of transportation requirements in the deployment of military units

    Get PDF
    We study the deployment planning problem (DPP) that may roughly be defined as the problem of the planning of the physical movement of military units, stationed at geographically dispersed locations, from their home bases to their designated destinations while obeying constraints on scheduling and routing issues as well as on the availability and use of various types of transportation assets that operate on a multimodal transportation network. The DPP is a large-scale real-world problem for which analytical models do not exist. We propose a model for solving the problem and develop a solution methodology which involves an effective use of relaxation and restriction that significantly speeds up a CPLEX-based branch-and-bound. The solution times for intermediate-sized problems are around 1 h at maximum, whereas it takes about a week in the Turkish Armed Forces to produce a suboptimal feasible solution based on trial-and-error methods. The proposed model can be used to evaluate and assess investment decisions in transportation infrastructure and transportation assets as well as to plan and execute cost-effective deployment operations at different levels of planning. © 2006 Elsevier Ltd. All rights reserved

    An efficient algorithm for the single machine total tardiness problem

    Get PDF
    This paper presents an exact algorithm for the single machine total tardiness problem (1//∑ T1). We present a new synthesis of various results from the literature which leads to a compact and concise representation of job precedences, a simple optimality check, new decomposition theory, a new lower bound, and a check for presolved subproblems. These are integrated through the use of an equivalence concept that permits a continuous reformation of the data to permit early detection of optimality at the nodes of an enumeration tree. The overall effect is a significant reduction in the size of the search tree, CPU times, and storage requirements. The algorithm is capable of handling much larger problems (e.g., 500 jobs) than its predecessors in the literature (≤ 150). In addition, a simple modification of the algorithm gives a new heuristic which significantly outperforms the best known heuristics in the literature

    A simulation model for military deployment

    Get PDF
    The Deployment Planning Problem (DPP) for military units may in general be defined as the problem of planning the movement of geographically dispersed military units from their home bases to their final destinations using different transportation assets and a multimodal transportation network while obeying the constraints of a time-phased force deployment data describing the movement requirements for troops and equipment. Our main contribution is to develop a GISbased, object-oriented, loosely-coupled, modular, platformindependent, multi-modal and medium-resolution discrete event simulation model to test the feasibility of deployment scenarios. While our simulation model is not a panacea for all, it allows creation and testing the feasibility of a given scenario under stochastic conditions and can provide insights into potential outcomes in a matter of a few hours. © 2007 IEEE

    A design of experiments approach to military deployment planning problem

    Get PDF
    We develop a logistics and transportation simulation that can be used to provide insights into potential outcomes of proposed military deployment plans.More specifically, we model the large-scale real-world military Deployment Planning Problem.It involves planning the movement of military units from their home bases to their final destinations using different transportation assets on a multimodal transportation network. We use an intelligent design of experiments approach to evaluate logistics factors with the greatest impact on the overall achievement of a typical real-world military deployment plan. © 2008 IEEE

    Authoritarian Neoliberalism and Democratic Backsliding in Turkey: Beyond the Narratives of Progress

    Get PDF
    Unpacking the core themes that are discussed in this collection, this article both offers a research agenda to re-analyse Turkey’s ‘authoritarian turn’ and mounts a methodological challenge to the conceptual frameworks that reinforce a strict analytical separation between the ‘economic’ and the ‘political’ factors. The paper problematises the temporal break in scholarly analyses of the AKP period and rejects the argument that the party’s methods of governance have shifted from an earlier ‘democratic’ model – defined by ‘hegemony’ – to an emergent ‘authoritarian’ one. In contrast, by retracing the mechanisms of the state-led reproduction of neoliberalism since 2003, the paper demonstrates that the party’s earlier ‘hegemonic’ activities were also shaped by authoritarian tendencies which manifested at various levels of governance

    Displacements analysis of self-excited vibrations in turning

    Full text link
    The actual research deals with determining by a new protocol the necessary parameters considering a three-dimensional model to simulate in a realistic way the turning process on machine tool. This paper is dedicated to the experimental displacements analysis of the block tool / block workpiece with self-excited vibrations. In connexion with turning process, the self-excited vibrations domain is obtained starting from spectra of two accelerometers. The existence of a displacements plane attached to the tool edge point is revealed. This plane proves to be inclined compared to the machines tool axes. We establish that the tool tip point describes an ellipse. This ellipse is very small and can be considered as a small straight line segment for the stable cutting process (without vibrations). In unstable mode (with vibrations) the ellipse of displacements is really more visible. A difference in phase occurs between the tool tip displacements on the radial direction and on the cutting one. The feed motion direction and the cutting one are almost in phase. The values of the long and small ellipse axes (and their ratio) shows that these sizes are increasing with the feed rate value. The axis that goes through the stiffness center and the tool tip represents the maximum stiffness direction. The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the large (resp. small) ellipse displacements axis. FFT analysis of the accelerometers signals allows to reach several important parameters and establish coherent correlations between tool tip displacements and the static - elastic characteristics of the machine tool components tested
    • …
    corecore