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This paper presents an exact algorithm for the single machine total tardiness problem (1// 3 T;). We present a new synthesis of
various results from the literature which leads to a compact and concise representation of job precedences, a simple optimality
check, new decomposition theory, a new lower bound, and a check for presolved subproblems. These are integrated through the
use of an equivalence concept that permits 1 continuous reformation of the data to permit early detection of optimality at the nodes
of an enumeration tree. The overall effect is a significant reduction in the size of the search tree, CPU times, and storage
requirements. The algorithm is capable of handling much larger problems (e.g., 500 jobs) than its predecessors in the literature
(< 150). In addition, a simple modification of the algorithm gives a new heuristic which significantly outperforms the best known

heuristics in the literature.
1. Introduction

In this paper, we present an exact algorithm that signifi-
cantly advances the computational state-of-the-art on the
single machine total tardiness scheduling problem,
1// 3 T;. In this problem, »n jobs with known processing
times and due dates must be sequenced on a single con-
tinucusly available machine. If a job is completed after its
due date, it is considered tardy, and is charged a penalty
equal to its completion time minus its due date. The
object is to find a sequence that minimizes the total tar-
diness. The weighted version of the problem is strongly
NP-hard (Lenstra er al.,, 1977). The version with unit
weights which we study i1s NP-hard in the ordinary sense
{Du and Leung, 1990). A pseudo-polynomial time dy-
namic programming algorithm is available (Lawler,
1977), whose time bound is O(n* 2 py) or

O(r15 max p; ),
J

where p; is the processing time of job j and » the number
of jobs. The method relies on a decomposition theorem
proved by Lawler (1977), and refined and strengthened by
Potts and van Wassenhove (1982, 1987).

1// 3. T; was initially introduced by McNaughton
(1959) and the first thorough study done by Emmons
(1969), who proves dominance theorems that must be
satisfied by at least one optimal schedule. These theorems
are later generalized to non-decreasing cost functions
(Rinnooy Kan et al., 1975). Exact methods rely either on
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branch and bound (Schwimer, 1972; Rinnooy Kan et al.,
1975; Fisher, 1976; Picard and Queyranne, 1978; Sen
et al., 1983; Potts and van Wassenhove, 1985; Sen and
Borah, 1991; Szwarc and Mukhopadhyay, 1996) or on
dynamic programming (Srinivasan, 1971; Lawler, 1977,
Schrage and Baker, 1978; Potts and van Wassenhove,
1982, 1987).

Even though this problem has been around for more
than 30 years, relatively little progress seems to have been
made in developing effective computational procedures
for exact solutions. Early algorithms (e.g., Fisher, 1976)
were able to solve problems with about 50 jobs. The
dynamic programming-based algorithm of Potts and van
Wassenhove (1982) is able to solve problems with {00
jobs and the branch and bound algorithm of Szwarc and
Mukhopadhyay (1996) problems with 150 jobs. An im-
portant bottleneck in handling larger-sized problems is
the core storage requirement (Potts and van Wassenhove,
1982). The dynamic programming aigorithms, developed
for this problem require O(2") storage in the worst case,
even though efficient bookkeeping leads to reduced stor-
age in most implementations. Branch and bound algo-
rithms that use job precedences (Emmons, 1969) at every
subproblem requires O(n?) storage per subproblem. For a
depth-first search that implements cycle prevention rules
(needed for consistent application of Emmons’ theorems)
this amounts to a total core storage of O(n*} if one keeps
an O(n?) precedence record at every level of the search
tree. In contrast, the algorithm that we propose requires
O(n) storage for job precedences, which results in a total
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core storage requirement of Q(n?). Hence, computational
difficulties related to limited storage begin to arise at
much larger # in our branch and bound algorithm than in
the existing algorithms. In addition, an efficient and
simplified way of handling the data allows us to auto-
matically enforce cycle prevention which is a computa-
tionally expensive but unavoidable task for the existing
methods.

With these features, the proposed algorithm is capable
of handling much larger problems (e.g., 500 jobs) than
its predecessors in the literature. The CPU times based
on 2800 test problems indicate that problems with 500
jobs can be solved to optimality with a 87.5% success
rate while those with 400 and 300 jobs can be solved
optimally with a 95 and 100% success rate, respectively.
The test sets are generated using the method of Fisher
(1976), which has been used in the literature to evaluate
the previous state-of-the-art algorithms (e.g., Potts and
van Wassenhove, 1982; Szwarc and Mukhopadhyay,
1996). The algorithm and the test sets are available in
the web site http :\\www.bilkent.edu.tr\~bkara.

The proposed algorithm is a depth-first branch and
bound algorithm with three major phases: f-sequence
construction and f-test, decompositions, and fathoming
tests. The f-sequence constructed in the first phase of
the algorithm is a critically important sequence which
often solves the problem optimally. The f-test is a
simple check for optimality of the f-sequence. [f the test
is passed the optimal sequence is at hand. Otherwise, the
algorithm continues with the decomposition phase that
utilizes three different decomposition rules: exact de-
composition, key position decoraposition, and branch
decomposition. Fathoming tests are done by means of a
lower bound or by checking if the current job popula-
tion matches one of the earlier job populations that
have already been solved optimally (found-solved). This
basic structure is repeated at each node of the search
tree.

The proposed algorithm is justified on the basis of four
theorems. Theorem 1 (S-Theorem) gives sufficient con-
ditions for optimality. This theorem is proved on the
basis of Emmons (1969) and Lawler (1977). The exact
decomposition (Theorem 2) is obtained from Emmons’
first and second theorems extended via Lawler (1977).
The key position decomposition (Theorem 3) and the
branch decomposition (Theorem 4) are direct extensions
of the decomposition theorems of Chang et al. (1995) and
also those of Potts and van Wassenhove (1982) via
Lawler (1977). The relationship of the proposed theory to
the existing theory is summarized in Fig. 1.

The paper is organized as follows. In Section 2, we
provide the basic results from the literature that we use in
our algorithmic design, In Section 3, we prove the §-
optimality. In Section 4, we give an efficient method to
construct the fi-sequence. In Section 5, we give three de-
composition theorems. In Section 6, we give the proposed
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Fig. 1. The relationship of the proposed theory to the existing
theory.

algorithm. Additionally, we briefly discuss time and
storage requirements of the algorithm. In Section 7, we
present and discuss the computational results. In Section
8, we present two new heuristics and discuss their com-
putational performance. The paper ends with concluding
remarks in Section 9.

2. Basic results

In this section, we present the existing theory that we use
in our algorithmic design, namely the first and second
theorems of Emmons (1969) and the theorem due to
Lawler (1977).

Let J ={I,...,n} and let p;d; denote, respectively,
the processing time and due date of job j. For any se-
quence S of job indices, let C,(S) be the completion time
of job jinsequence §. The total tardiness associated with
S is T(S) = X,y max(0, C;(S) — d;). The problem is to
find a sequence S* such that 7($*) < T(S)VS. For any
subset K of J, let p(K) = 3,k -

Theorem 1 of Emmons (1969). For a pair of jobs j and k
with j < k, if a set By of jobs is known to precede job k in
some optimal sequence and if d; < max{p(Bi) + pr,di},
then there exists an optimal sequence in which all jobs in
By U {j} precede job k.
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Theorem 2 of Emmons (1969). For a pair of jobs j and k
with j < k, if sets By and Ay of jobs are known to precede
and succeed job k, respectively, in some optimal sequence,
d;y > max{p(Bi) + px,dc}, and d;+ p; > p(J — Ay), then
there exists an optimal sequence in which all jobs in
Ax U {j} succeed job k.

We refer to B, and 4; as the predecessor and successor sets
of job j, respectively, if jobs in B; are known to precede
and jobs in 4; are known to succeed job j in at least one
optimal sequence. In addition, we let E; = p(8;) + p;,
L; = p(J — A;) and refer to these as the earliest and latest
completion times of job j, respectively.

The following corollary to Theorem 2 (Emmons, 1969)
gives sufficient conditions for optimality of the Earliest
Due Date (EDD) sequence.

Corollary 2.2 of Emmons (1969). The EDD sequence is
optimal if it results in waiting times W;<d; (ie.,
CH{EDD)—p; < d;) for all jobs j.

The next theorem states that the due dates can be mod-
ified in appropriate ranges without losing optimality.

Theorem 1 of Lawler (1977). Let S* be any sequence which
is optimal with respect to the given due dates d\, . . . ,dy and
let C;(S*) be the completion time of job j for this sequence.
Let dj’ be chosen such that min{d;, C;(S*)) <d <

max(d;, C;(§*)). Then any sequence S whzch is opttma!
with respect to the due dates di, ..., d. is also optimal with
respect to the due dates dy, . .. ,d, (bur not conversely).

3. p-Optimality

Assume the jobs in J are indexed in non-decreasing order
of processing times with ties broken by non-decreasing
order of due dates. Given an instance of the problem with
due dates d;, suppose we have applied (without creating
cycles) Theorems | and 2 of Emmons (1969) and obtained
predecessor sets 8. Let C; = p(B;) + p; and §; = max(d;,
p(B;) +pj) V. Clearly C;isa lower bound for the com-
pletion time of job j in any optimal sequence that satisfies
the precedence relations with respect to the sets B;. Define
the fi-sequence to be the sequence such that the jobs are
ordered in non-decreasing order of their §; values with
tied ones ordered in increasing order of job indices. Let
J*={jeJ:3i>jsuchthat §; > fi}.

Theorem 1 (p-theorem). The fi-sequence is optimal if
B; = p(Fy) Yj € J" where F;is the set of jobs that precede
job jin the p-sequence.

Proof. We first prove that the S-sequence is optimal for
the problem with due dates d; = §;, then prove that it is
also optimal for the original problem. Let jeJ. If

663

j€J*, then the assumption of the theorem gives
B, > p(F;) = Wj (where W, is the waiting time of job j in
the f-sequence). If j¢J*, then F;={i:p; <p; and
B; < B;} (due to the indexing convention). It follows from
Theorem 1 of Emmons (1969) that every job i 1n F; is also
in B;. Hence, 8, > C; = p(F}) + p; > p(F;) = W;. We have
shown that ;> W v j EJ Corollary 2.2 (Emmons,
1969) implies that the B-sequence is optimal for the
problem with due dates §,.

Observe that the interval [¢;, max(d;, C})] is a subin-
terval of the interval [min(d;, C;(5%)), max(dJ,C (§*))]
where §* is any optimal sequence that satisfies the pre-
cedence relations relative to the sets B;. Since d = fi; isin
this interval, the f-sequence is optimal for the problem
with due dates d; as a result of Theorem 1 of Lawler
(1977). ]

The proof of Theorem 1 provides an important idea
which we term the idea of eguivalence. By observing that
the new due dates d;=f; are in the intervals [d},
max(d;, C;)]. this idea permits every theoretical statement
that is valid for the original problem to be re-stated in
terms of the data of the new problem while ensuring that
the conclusions obtained from such statements remain
valid not only for the new problem but also for the
original problem. The idea of equivalence is also used in
the proofs of Theorems 2, 3, and 4 in the sequel, thereby
greatly increasing the utility of the existing theory by
appropriately modifying the due dates during the branch
and bound algorithm. Even though the root of the
equivalence idea lies in Theorem 1 of Lawler (1977), it
should be noted that Lawler’s theorem alone does not
provide a way of creating the modified problem because it
requires knowing an optimal sequence. On the other
hand, replacing C,(S*) with C; circumvents this difficulty
in a simple but strong way by climinating the need to
know an optimal sequence.

4, Sequence construction

Theorem 1 gives sufficient conditions for optimality of the
p-sequence which is nothing but the EDD sequence with
respect to modified due dates obtained through the use of
the dominance theorems of Emmons (1969). In this sec-
tion, we present a method of constructing this sequence in
an extremely efficient way. If the f-sequence satisfies the
sufficient conditions of Theorem [, an optimum is at
hand. Otherwise, the problem is decomposed to obtain
new subproblems each of which goes through the opti-
mality test again with respect to their own f-sequences.
Let o; = max(p;,d;) Vj. Sequence the jobs in non-de-
creasing order of thelr a; values with tied jobs sequenced
in increasing order of their indices. The tie breaker defines
the resulting sequence uniquely. We call this sequence the
a-sequence. Note that the well-known heuristic rule MDD
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(Modificd Due Date) (Baker and Bertrand, 1982) which
replaces a job’s due date by the current time ¢ plus that
job’s processing time whenever d; < t+ p; gives the o;
values if 1 = 0. However, we use the a-sequence as a seed
to begin the construction of the fi-sequence, rather than
as a heuristic rule. Observe that any optimal solution to
the problem with due dates a; is also an optimal solution
for the problem with the original due dates ;. This fol-
lows from the fact that p; > d; implies job j will be tardy
regardless of where it is placed in the sequence. Hence,
shifting its due dates to p,; simply changes the tardiness of
job j by a constant amount (see also Tansel and Sab-
uncuoglu (1997) for additional discussion).

For fixed j. partition J — {;} into sets LD; = {i € J :
i<jand o <o}, LU;={ieJ:i<jand o; > a;},RD;
={ieJ:i>jand o, <o}, and RU;={ieJ:i>j
and o; > o;}. We call LD;(RD;} the left-down (right-down)
set and LU;(RU;) the left-up (right-up) set of job j. The
terminology is motivated by the fact that if we plot the
points (p, ), ..., (Ps, %) in the plane and pass a hori-
zontal and a vertical line through the fixed point (p;, «;),
the plane is divided into four quadrants at (p;, «;) each of
which contains one of the above-mentioned sets. Note
that jobs whose points fall on the horizontal or the ver-
tical hne through the point (p;, ;) belong either to the
left-down set or the right-up set of job j depending on
their indices. Note also that if (p;, ;) = (p;,a;), then i is in
LD;if i< jand iisin RU; if i > j. Let D; = LD; URD;
and U; = LU; U RU;. Call D; the down-set and U; the up-
set of job J. ,

The final f-sequence is constructed from the o-se-
quence by means of successive transformations of due
dates. Observe that if we take the initial f-sequence to be
the a-sequence, then the set F; in Theorem 1 is the same as
D; and J* = {j € J : RD; # (}}. We refer to the checking
of sufficient conditions #; > p(D;} Vj € J* as the f-test.
We initially apply this test to the a-sequence. If the test
fails, the data transformation is initiated and continued
until either the fi-test is passed or the transformation is no
longer possible. This transformation of the problem into
a new form which is more easily solvable than the initial
form is one of the features that distinguishes our algo-
rithm from the existing algorithms.

The following property is a direct consequence of
Theorem 1 of Emmons (1969):

Property L. There is an optimal sequence such that LD is a
predecessor set of job j and RU; is a successor sef of job j.

Property 1 gives an easy way to build the predecessor sets
of all jobs. The O(n?) procedure below accomplishes this
by successively expanding left-down sets. This procedure
defines the fi-sequence recursively. We begin the proce-
durec with 8; = a; Vj (or with the most recent f; values
obtained from the procedure RIGHT-EXPAND which is
explained later).

Tansel et al.

LEFT-EXPAND

Step 1. Select any job & which is not selected yet (if none
left, stop).

Compute p(LDy).

If p(LDy)}+pc > B, then increase f, to
p(LDy) + px, redefine LD, with respect to the new
point (p, ;") and return to Step 2). Otherwise,
add job k to the list of selected jobs and return to
Step 1).

Step 2.
Step 3.

Example 1 the procedure is illustrated in Fig. 2 for
k= 10. Initially, ;5 =a0 =186 and LDy, = {l,5,7}.
With p(LDyg) + pip = (10 4 57 + 66) + 82 = 215, Step 2
updates B, to 215 and LD now includes job 8 in addi-
tion to 1,5,7. The vertical arrow that originates at job
I¥’s point in the figure indicates this expansion. The
procedure continues with the second, third, and forth
expansions as shown by the vertical arrows. The final f),
is 544 and LDy is {1,2,3,4,5,6,7,8,9}.

Let B = (B,...,B,) be a vector of f; values of jobs at
any time during the operation of algorithm LEFT-EX-
PAND. Redefine LD;, LU;,RU;,RD;,D;, U;, and J* with
respect to the points (p1, 1), ..., (Pu; B,)-

The f-test can be conducted at any time during the
algorithm LEFT-EXPAND. A positive answer is con-
clusive (optimum at hand) while a negative answer signals
the need to further increase the f; values (especially those
that failed in the test). In case of failure of the optimality
test, we can use the information available in the right-
down sets to further increase the fi; values based on
Theorem 2 of Emmons. For a fixed job j, if we choose a

Due date

Forth caparsion for job 10

Third cxpansico for job 10

336
322 4

e

1y S——
2717

215
1954

186

B g 'First cxpansion for job 10

10

155
1351
174
100

Initial left-down
set of job 10

10 2 43 aa 5763 66 73 77 B2 process time

Fig. 2. lllustration of procedure LEFT-EXPAND for job 10.
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job k in the most recent right-down set of job j, all con-
ditions of Emmons’ second theorem except possibly the
last one are automatically satisfied. That is, if we take
B, = LDy, Ay = RUy, and regard ﬁj and f; to be the new
due dates, then the only remaining condition that needs
to be checked is the inequality §, - p; > p(J — RUy) (the
condition §; > max(p(By) + px, di) in Theorem 2 of Em-
mons (1969) is automatically satisfied by all jobs k in RD;
since f§; > f; for such jobs due to the definition of RD).
Whenever this inequality is satisfied, job k& qualifies as a
predecessor to job j. Such jobs in the right-down set of a
given job can be used to further increase the f§; value of
that job. This is done by the following O(n?) procedure,
RIGHT-EXPAND.

RIGHT-EXPAND

Step 0. Let By =LD; and 4; = RU; Vj where LD, RU;
are the left-down and right-up sets corresponding
to either f; = «; Vj or the most recent values of
B1,82,-..,8, obtained from LEFT-EXPAND.
Let £;=p(B;)+p; and L; =p{J ~ 4;) V. Set
j=n+1l

Set j — j— 1. If j =0 stop, else go to Step 2.
Identify all jobs k € RD; (defined by the most
recent f§; values) which are not in B; and which
satisfy the inequality §; +p; > L;. Let R be the
set of jobs so identified. If R is null, go to Step 1;
else go to Step 3.

Replace B; by B, U R and increase £; by p(R). For
each k in R, replace 4, by A¢ U {j} and decrease
Li by p;. If E™ > f,, increase f3; to £7°%, and
return to Step 2. Otherwise return to Step 1.

Step 1.
Step 2.

Step 3.

Consider the foliowing example:

Example 2. The E; and L; values in Table | are computed
with respect to the LD; and RD; sets defined by the o;
values. For example, E4 = p(LD4) + py where LDy =
{2,3}. For j = 8,7, Step 2 outputs empty RD,. Continu-
ing with j =6, Step 2 gives RD¢ = {7,8} and R = {7}.

Table 1. The data for Example 2

J P d; % E; L
1 57 427 427 57 437
2 80 67 80 80 137
3 91 42 91 171 228
4 94 31 94 265 322
5 103 510 510 425 540
6 104 622 622 529 760
7 115 322 322 380 644
8 116 548 548 656 760
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Hence, Step 3 gives Bs = LDgUR = {1,2,3,4,5,7}, in-
creases Eg to 644, updates 47 to RU; U {6} = {8,6}, de-
creases L7 to 540, and increases fi; to 644. Returning to
Step 2, with j = 6 again, the execution of Steps 2 and 3
vield no change for this job, so the algorithm returns to
Step 1 and continues with j = 5. Processing job 5 through
two cycles of Steps 2 and 3, we obtain Bs = {1,2,3,4,7},
Es = 540,47 = {8,6,5},L7 =437, and f5 = 540. Con-
tinuing in like manner with empty RD; sets for j = 4,3,2
and with two passes of Steps 2 and 3 for j = 1, we obtain
the final f-sequence (2,3.4,7,1,5,6,8) with correspond-
ing B; values of (80, 171,265, 380,437, 540, 644, 656).

We experimented with three strategies for constructing
the f-sequence which we call LEFT, LEFT-RIGHT, and
FULL. LEFT uses only LEFT-EXPAND while LEFT-
RIGHT first uses LEFT-EXPAND, then switches to
RIGHT-EXPAND, then executes LEFT-EXPAND one
more time and stops. FULL uses LEFT-EXPAND and
RIGHT-EXPAND repeatedly, one after the other, until
no further updating occurs in the ; values. The number
of nodes of the enumeration tree generated by LEFT
exceeds in general those generated by LEFT-RIGHT
which usually marginally exceeds those generated by
FULL. Based on our computational tests, we note how-
ever that, in terms of average CPU times, LEFT generally
outperforms both LEFT-RIGHT and FULL except for
the most difficult classes of instances. A more detailed
discussion of the efficiency issues is given in Section 6.

5. Decomposition

In this section we give three decomposition theorems:
exact, key position, and branch decomposition. All of
these decompositions try to identify a position in the se-
quence to split the problem into subproblems. However,
there is a major difference between branch decomposition
and the other two. Whereas branch decomposition can
only identify a set of candidate positions for splitting the
problem, the other two find a specific position for de-
composition. Branch decomposition leads to different
branches from a given node in a branch and bound pro-
cedure and to different states in a dynamic programming
procedure. Either way, branch decomposition typically
leads to an exponential number of subproblems. In con-
trast, exact and key position decompositions do not lead
to any branching. Hence, the major strength of exact and
key position decompositions is their ability to continue
with a single branch (or a single state in dynamic pro-
gramming), but their major weakness is that there is no
guarantee that such a decomposition may exist. Conse-
quently, the latter two types of decompositions do not
have the ability to lead to a branch and bound or dynamic
programming algorithm. However, if they are combined
with branch decomposition, the outcome is a faster
branch and bound or dynamic¢ programming procedure,
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In the proposed algorithm, we use exact decomposition
whenever the f-test fails. If no job qualifies for exact
decomposition, we continue with key position decompo-
sition which is an enhanced version of Theorem 5 of
Chang et al. (1995). If this decomposition also fails, we
continue with branch decomposition which is an en-
hanced version of the decomposition proposed by Potts
and van Wassenhove (1987). The latter two decomposi-
tion theorems are enhanced in that the f; values are used
in these theorems instead of the initial due dates, thereby
permitting repeated use of these theorems with continu-
ally modified data. Note that the original decomposition
of Lawler (1977) is also in the category of branch de-
composition. In fact, Potts and van Wassenhove’s de-
composition strengthens Lawler’s by eliminating certain
alternative decomposition positions.

The exact decomposition theorem looks for a job ¢ that
qualifies for decomposition and assigns it to a specific
position in the sequence which splits the problem into two
subproblems corresponding to the down-set and up-set of
job g. The theorem uses the information that is available
at the end of the construction of the f-sequence. This
information includes the final sets, LD;, LU;, RD;, RU;, as
well as the final values of the latest times. Ly,..., L, (If
LEFT is used, the L;s are taken to be p(J) — p(RU,)
where the RU;’s are the final right-up sets at the end of
LEFT-EXPAND). Note that the time complexity of
scarching for a job ¢ that qualifies for exact decomposi-
tion is O(n?).

Theorem 2 (Exact decomposition). Let g € J. If

(i) either RD, =0 or p,+ B, > L;¥i € RD, and
(i1) either LUy =0 or pj+ f; > LgV j € LU,

then there is an optimal sequence such that all jobs in D,
precede g and all jobs in Uy succeed q. This implies that the
problem decomposes in the form (Dy,q,U,;) where the
subproblems corresponding 1o the sets Dy and U, are solved
independently. The jobs in U, have a ready time of

p(Dq) + Pq-

Proof. Consider the problem with modified due dates
B, .., B, For this problem it can be shown, via Theorem
2 of Emmons (1969) that (i) in the theorem implies that
RD, is a predecessor set of g while (i1) implies that LU, is a
successor set of g. Property | implies that LD, is also a
predecessor set of ¢ and RU, is also a successor set of g.
Hence, D, is a predecessor set and U, is a successor set for
job g for the problem with due dates $,,..., f,, i.e., there
exists a sequence S = (81,4,52) which is optimal with
respect to due dates f8,..., 8, such that §) is a permu-
tation of D, and §; is a permutation of U,. Consider now
the original problem with due dates d,...,d,. If we as-
sign C; = £; where the E;’s are the earliest times obtained
at the end of the construction of the fi-sequence, then the
due dates f; € [d;, max(d,,C;)]. If §* is an optimal

Tansel et al.

sequence that obeys the so far obtained precedence rela-

~ tions, then C; < C;(S*)V so that §; are in the intervals

[min(d;, C;(S*)), max(d;, C;(§*))]. Theorem 1 of Lawler
(1977) implies that (8, g,5>} is an optimal sequence with
respect to due dates 4y, ...,d,. |

Given the earliest times £y,...,E, and the latest times
Ly,...,L, during or at the end of the construction of the
B-sequence, if E; = L; for some j then the problem clearly
decomposes in the form (D, j, U;) which is the kind of
block decomposition given by Szwarc and Mukhopad-
hyay (1996). In this case, it 1s straightforward to show
that conditions (i) and (ii) of Theorem 2 are satisfied.
However, Theorem 2 may yield a decomposition even if
E; < L; ¥V j. Example 3 illustrates this.

Example 3. The data for this example are given in Table 2.
Taking B; = LD;, A; = RU; and $; = max(E;,d;), we have
the results listed in Table 3. Even though E; < L; ¥},
there is a decomposition at job 7 since RD; =0 and f,+
P=941>L;=58+pm=1934+3> Ly, fl,+ps =
143 +9 > L, e + ps = 132 + 14 > L4, Thus, jobs Dy =
{3,5}and U; = {1,2,4,6,8,9,10,11, 12, 13, 14, 15, 16}
can be sequenced independently.

Next we give the key position decomposition theorem.

Theorem 3 (Key position decomposition). Let Sp=
([1],...,[n]) be the B-sequence and assume job n is in po-
sition k in Sg. Let Sg(i) be the sequence obtained from Sg by
moving job n from position k to position i and let T(Sp(i))
be the total tardiness of Sp(i) computed with respect to the
due dates B\, ..., B,. Define the key position index h to be
the smallest index such that

T(Sp(k)) = min T(Sp(i)).

Table 2. The data for Example 3

J Py d;
1 1 99
2 3 193
3 4 26
4 9 143
5 13 45
6 14 132
7 15 52
8 15 215
9 16 208
10 17 94
11 17 95
12 17 116
13 17 152
14 17 197
15 18 6l
16 18 173




An efficient algorithm for the single machine total tardiness problem

If h < n, then there is a sequence S = (S,S,) which is
optimal for the problem with due dates 3\, . .., B, as well as
Jfor the original problem such that S, is a permutation of the
jobs that occupy the first h positions in Sg while S is a
permutation of the jobs that occupy the last n — h positions
in Sp.

Proof. The theorem is an equivalent statement of Theo-
rem 5 of Chang et al. (1995) where the d,’s are replaced
by the 8;’s and the EDD sequence is replaced by the f-
sequence. Hence, the optimality of §=(5,5) for
the problem with due dates f,,. .., 8, is immediate from
the theorem of Chang e al. (1995). The optimality of
S = (8, 8,) for the original problem follows from Law-
ler’s theorem using again the fact that B, € [d;,
max(d;, C;)] € [min(d;, C;(§")), max(d;, C;(S*))] where S*
is an optimal sequence that obeys the obtained prece-
dence relations. |

With the above theorem, whenever the key position index
h < n, we can split the current job population into two
subproblems, one consisting of the jobs in positions
1,...,hin the fi-sequence, the other consisting of those in
positions A+ 1,...,n in the f-sequence. The ready time
of the latter set is redefined to be the sum of the pro-
cessing times of the first set. Note that checking for key
position decomposition takes O(n?) time.

Both Theorems 2 and 3 are based on the f-sequence.
The two theorems differ in two respects:

1. The key position decomposition can be carried out
only relative to the longest job whereas the exact
decomposition can be carried out relative to any
qualifying job q.

2. Key position decomposition decomposes the prob-
lem into two sets without specifying the position of

Table 3. The results for Example 3
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any of the jobs (including the longest job) whereas
the exact decomposition specifies the position of the
qualifying job g.

Next, we present the branch decomposition. [n what
follows, we say job j passes the fi-test with strict inequality
if B; > p(D;) and with equality if §; = p(D;). If D; =0,
take p(D;) = 0. Theorem 4 below is an equivalent state-
ment of Potts and van Wassenhove (1987) decomposition
where the d;’s are replaced by the §;’s, Lawler’s theorem
implies that the resulting decomposition for the problem
with due dates f,,...,f, is also valid for the original
problem.

Theorem 4 (Branch decomposition). Assume job n is in
position k in the B-sequence. The problem decomposes with
job n in position I for some [ satisfying one of the following
conditions:

(1Y [ =k and the (k + |)st job in the $-sequence passes
the f-test with strict inequality.

(1) lefk+1,....n— 1} and the (I)th job either fuils
the f-test or passes with equality while the (I 4+ 1)st
Job pusses the test with strict inequality.

(i11) 1 = n and the (n)th job either fails the test or passes
with equality.

The following example illustrates the Branch decompo-
sition.

Example 4 the data for this example are given in Table 4.
The job with the largest processing time is job 16, and it is
in the first position of the f-sequence, so k = 1. The -
sequence, togetl'}er with f3; values, down-set totals of the
jobs, and passes and fails of the test are given in Table 5.
A /7 stands for a pass with strict ineguality, an “="
sign stands for a pass with equality, and an “X” stands

Table 4. The data for Example 4

J £ L B J 1z Bi
1 1 85 99 1 1 456
2 4 163 193 2 14 432
3 4 8 26 3 15 246
4 14 128 143 4 15 385
5 17 30 45 5 15 490
6 32 128 132 6 23 325
7 32 59 52 7 26 519
8 74 211 215 8 35 418
9 75 211 208 9 41 390

10 49 125 94 10 42 ' 440

11 66 142 95 11 43 417

12 84 159 116 12 49 475
13 124 176 152 13 59 506
14 144 211 - 197 14 66 432
15 50 193 6! 15 77 292
16 160 211 173 16 85 241
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Table 5. The results for Example 4

B-sequence B, p(D;) Test result
16 241 0 v
3 246 85 Vv
IS5 292 100 v
6 325 177 v
4 385 200 v
9 390 215 Vv
11 417 256 v
8 418 299 v
2 432 334 v
14 432 348 Vv
10 440 414 Vv
] 456 456 =
12 475 457 Vv
5 490 506 X
13 506 521 X
7 519 580 X

for a failure of the test. The test results imply directly that
the problem decomposes with job 16 in positions 1, 12,
and 16.

Szwarc and Mukhopadhyay (1996) give an additional
rule that eliminates some of the positions permitted by
the decomposition of Potts and van Wassenhove (1987).
This rule is adapted to the f-sequence as follows. The
algorithm BETA uses this additional rule in the Branch
decomposition.

Rule 5¢ (Szwarc and Mukhopadhyay (1996)). Let the f-
sequence be [1],.. ., [#] and assume job » is in position & in
the f-sequence. Then job # is not in position s, s > &, if
there exists a job i, i € {[k+ 1],...,[s — 1]} such that
Pyt Ppet) F Pl o P o) < pitdi

Rule 5c additionally eliminates position 12 in Example
4 since 372+ 85 < Pua +dig = 498.

6. The algorithm

The proposed algorithm, which we call BETA, is a depth-
first branch and bound algorithm. The algorithm first
checks whether the problem on hand is in the list of
already solved subproblems (found-solved). If not, the f5-
sequence is constructed and the f-test applied. If the test
is passed, then the f-sequence is optimal. Otherwise, the
algorithm looks for a job that qualifies for exact
decomposition. If such a job is found, the problem is
decomposed and each subproblem is solved via BETA.
Otherwise, the algorithm looks for a position A4 that
qualifies for key position decomposition. If such a
position is found, decomposition is applied and the
subproblems are solved via BETA. Else, the algorithm
continues with branch decomposition. During the
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processing of the branches, BETA is called separately for
each branch and two fathoming criteria are applied, one
based on found-solved, the other one based on a lower
bound. An example that illustrates the algorithm is given
in the Appendix.

Of the two fathoming criteria, found-solved first checks
at each branch if the subproblem under consideration has
already been solved during the processing of some other
branch. If the answer is yes, just take the solution, oth-
erwise continue with the algorithm in the usual way.
Found-solved significantly reduces the number of
branches in most instances. As a result, the total CPU
time decreases even though additional time is spent per
branch for checking the pre-solved problems. The found-
solved list contains the most recent & subproblems that
have been solved during the algorithm where &£ = 1000 in
our implementation.

The second fathoming criterion is based on a lower
bound. For the lower bound computation, we use the j-
sequence and define a relaxed problem with new due
dates d}°V = max{f;, p(D;)}. With the new enlarged due
dates, the f-test will necessarily pass and the resulting f3-
sequence will be optimal for the modified problem. Since
d}*™ > B,V , the total tardiness of the f-sequence with
respect to the new due dates gives a lower bound. We
proceed with the f-test only if the lower bound fails to
fathom that node.

A few words on simplified bookkeeping and compu-
tational efficiency of the algorithm are in order. The
bookkeeping is greatly simplified by keeping an n-vector
which concisely represents all precedence relations. This
n-vector contains the job indices in the same order as they
appear in the f-sequence (and the associated records
B EjLiypj,d; V). From this n-vector, one can easily
obtain the sets B;, 4; and the associated earliest and latest
times £;, L;. This results in O(n) space for keeping track
of precedence relations which lead to O(n®) space re-
quirement for a depth-first branch and bound tree,
whereas existing methods accomplish the same thing in
O(n*) space. As for time requirements, the procedures
LEFT and LEFT-RIGHT obtain the S-sequence (and
hence the associated precedence relations) in O(»n?) time,
whereas the existing methods require O(n*) time (O(n?)
checking required each time a new relation emerges) for
constructing the precedence diagram.

With these considerations, the time and space re-
quirements of the existing methods can easily become
prohibitive for n > 200 whereas our way of handling the
data allows us to solve much larger problems. The time
bounds of the different components of the algorithm
BETA are given in Table 6. Computational tests indicate
that, on the average, about 80% of the total CPU time
per branch is spent on the -sequence computation, about
15% on exact and key position decomposition, and about
5% on branch decomposition, lower bound, and found-
solved.
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f-sequence Optimality check Exact Branch Key position Lower bound Checking for
construction (B-test) decomposition  decomposition  decomposition comiputation Jound-solved
O(n®) for LEFT or on) 0 o) o) O(n) O(n)

LEFT-RIGHT
0" for FULL

7. Computational results

The performance of the proposed algorithm is measured
on a Sparc Station Classic with a 60 MHz microSPARC
8-CPU and a 384 GB main memory. The code is written
in the C language. The data generation scheme initially
proposed by Fisher (1976), which has traditionally been
used in the literature since then, is used to test the algo-
rithm for different types of instances. These instances of
varying degrees of difficulty are generated by means of
two factors: tardiness factor, T, and range of due dates, R.
For each problem, first the process times are generated
from a uniform distribution with parameters (1, 100).
Then the due dates are computed from a uniform distri-
bution which depends on p* = p(J) and on R and 7. The
due date distribution is uniform over [p*(1 — T — R/2),
p*(1 = T+ R/2)]. The values of T and R are selected from
the sets {0.2,0.4,0.6,0.8} and {0.2,0.4,0.6,0.8,1}, re-
spectively. This gives 20 combinations of R, T factors for
each problem size. We refer to each (R, T) combination as
a problem type. The number of jobs » is chosen from

{100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300,
400, 500}. We solve 10 different instances for each setting
of n, R, T giving a total of 200 instances for each choice of
n. The total number of random instances solved is 2800.
The time limit to abandon a solution is 80 hours.

A distinctive feature of the proposed algorithm is that
it is capable of handling very large populations of jobs
whereas this seems to be an impossibility for the existing
algorithms in the literature for » > 200. Even though the
hardest instances could not be solved to optimality for
n = 500, we still have an 87.5% success rate for this size
(i.e., 87.5% of the generated instances with n = 500 are
solved to optimality).

The detailed resulis are given in Table 7. Each cell in
that table represents the average CPU seconds of 10 in-
stances for each (R, T) pair and ». Of the three versions
(LEFT, LEFT-RIGHT, FULL) of the algorithm BETA,
the reported numbers except those in parentheses are
based on LEFT. The parenthetical numbers are the av-
erage CPU seconds for LEFT-RIGHT and are supplied
only for those cells where LEFT-RIGHT performed

Table 7. Average CPU seconds for the LEFT version of BETA (numbers in parenthesis are the CPU seconds for LEFT-RIGHT)

RT n = 100 n = 150 n = 200 n = 300 n = 400 n = 500
0202 0.03 0.13 0.70 5.75 31.40 88.50
0204 217 6.94 125.17 2638.50 29107.4 -
0.20.6 4.61 26.04 446.68 33430.90 - -
0208 1.38 1577 337.99 2269.20 107433.3 (67726.9) -
0402 0.00 0.00 0.00 0.00 0.00 0.00
0404 0.35 1.11 14.27 134.60 711.90 2685.80
0.4 0.6 1.96 6.54 92.53 1429.10 6602.90 74286.20 (67317.9)
0.4 0.8 0.08 0.27 0.57 15.20 17.00 42.30
0.6 0.2 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.4 0.14 0.19 0.60 19.90 24.40 56.40
0.6 0.6 1.43 4.56 34.88 386.30 1562.80 7328.90
0608 0.04 0.09 0.26 1.20 1.80 3.90
0.80.2 0.00 0.00 0.00 0.00 0.00 0.00
0.804 0.02 0.04 0.08 0.06 0.20 0.50
0.80.6 0.46 0.80 0.96 4.10 22.90 91.90
0.80.8 0.03 0.13 0.35 1.03 2.70 5.00
1.00.2 0.00 0.00 0.00 0.00 0.00 0.00
1.004 0.00 0.00 0.00 0.00 0.00 0.00
1.00.6 0.11 0.30 0.76 2.05 7.10 10.50
1.00.8 0.04 0.11 0.32 1.17 2.70 5.20
Avg. CPU 0.65 scc. 3.16 sec. 52.8 sec. 33.62 min. - -
Max. CPU [1.80 sec. 66.72 sec. 21.7 min. 19 (17.1) h. - -
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considerably faster than LEFT. As remarked earlier, even
though FULL gives the best overall performance in terms
of the number of branches, its performance in terms of
the average CPU seconds is inferior because FULL
spends considerably more time per branch to compute the
B-sequence than either LEFT-RIGHT or LEFT. The
number of branches generated by LEFT-RIGHT is
generally quite close to those generated by FULL, but
LEFT-RIGHT spends much less time per branch than
FULL. Hence, we recommend the use of LEFT-RIGHT
for n = 500 for the first four most difficult classes of in-
stances  corresponding  to (R, T) pairs  of
(0.2,0.6),(0.2,0.8),(0.2,0.4),(0.4,0.6), where the trade-
off between the number of branches and the CPU time
per branch works in favor of the reduced number of
branches. The same recommendation is valid for cate-
gories (0.2,0.6},(0.2,0.8) for # =400. In all the remain-
ing cases (i.e.. the 16 categories of » = 500, the 18
categaries of # = 400, and all 20 categories of n < 300),
we recommend the use of LEFT as it performs consid-
erably better than LEFT-RIGHT in terms of the average
CPU time. Note, however, that the maximum CPU time
of LEFT-RIGHT is considerably better for large
n (n > 300) than that of LEFT, e.g., 17.1 hours versus 19
hours for # = 300. The general pattern is that it becomes
more advantageous to switch-over to LEFT-RIGHT
from LEFT as »n increases where the switch-over point is
carlier for more difficult classes of instances.

As can be seen from Table 7, the average solution time
for n = 100 is less than 1 sec. The average solution times
for n = 150,200, and 300 are 3.16 secs, 52.8 secs, and
33.6 minutes, respectively (the averages for n = 400 and
500 are not available because not all instances are solved
for those sizes). The worst encountered solution times are
11.8 seconds, 1.11 minutes, 21.7 minutes, 17.1 hours for
n = 100, 150,200, 300, respectively (more than 80 hours
for sizes 400 and 500). Thus, our algorithm handles
problems of size 150 very successfully with an average
solution time of about 3 seconds while the maximum
solution time for 150 job problems is about 1 minute. 200
job problems are also successfully handled with an aver-
age CPU time of less than | minute and a maximum CPU
time of about 22 minutes.

Table 7 shows that the computation times are highly
dependent on the R, T factors. Of the three hard problem
types (0.2,0.4), (0.2,0.6), and (0.2, 0.8), the most difficult
one is the pair (0.2,0.6). For the blank cells in Table 7,
the algorithm obtained suboptimal solutions for n = 400,
and 500 whose average deviation from optimality is ap-
proximately 5%. In all other (R,T) pairs and for all
virlues of », the algorithm obtained the exact solution for
all generated instances.

Observe that five out of 20 (R, T) pairs have a solution
time of zero for all n values. Hence, the optimum is im-
mediately found in 25% of all instances. These are the
problem types corresponding to (R, T) pairs with T = 0.2
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with R =0.4,0.6,08,1 and T = 0.4 with R = 1. The op-
timum 1s immediately found for these problems because
either the B-sequence for the nitial job population hap-

‘pens to be the optimum one or a few branches lead to the

optimum immediately.

Figure 3 shows the average solution times in CPU
seconds as a function of n, ranging from 100 to 200.
Observe that, up to » = 130, the solution times are less
than 2 seconds. At n = 170 and 180, the solution times
are slightly more than 10 sec, and at n = 200, it is about
53 seconds. Hence, the slope increases rather slowly,
showing almost a linear trend, from n = 100 to 180. After
n = 180, exponential behavior begins to take over. Even
though our algorithm uses reduced memory (O(n) versus
O(n?) in existing algorithms), this exponential behaviour
is partly due to the hard disk and memory requirements.
However, our computational experiments up to # = 500
indicate that, the prohibitive nature of the exponential
behavior makes itself felt at much larger » (n > 300).

Statistics on the performance of the algorithm in terms
of solution times, number of nodes and the depth of the
tree are given in Table 8 in the range of n = 100 to 200
with increments of 10. A comparison in terms of relative
increase in CPU times indicates that the average solution
time of the algorithm of Szwarc and Mukhopadhyay
{1996) increases 23.69 times as » increases from 100 to 150
while the average CPU time of BETA increases 4.86 times
over the same range. Potts and van Wassenhove (1982)
do not report any computational times for this range of »,
but their reported results indicate that the CPU time in-
creases 35.61 umes as # goes from 50 to 100.

Szwarc and Mukhopadhyay (1996) report that, for
n = 150, the average number of branches and the average
depth of the tree are 9005 and 10.7, respectively. For the
algorithm BETA and for n = 150, the average number of
nodes is 811(634) and the average depth of the tree is
8.2(7.6) iIf LEFT(LEFT-RIGHT) is used which indicates
that there is a reduction of about 11(14) times in the
average number of branches and a reduction of about
2.5(3) levels in the average depth of the tree depending on
which of LEFT or LEFT-RIGHT is used.

Average CPU 1imey(seconds)
8 8 & g8 g

-
o

100 110 120 130 140 150 160 170 180 190 200
Number of jobs

Fig. 3. Solution times of BETA.
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Table 8. Average and worst case statistics for # values ranging from 100 to 200

n LEFT LEFT

LEFT-RIGHT

Solution time Number of nodes

Depth of tree

Number of nodes Depth of tree

Average Max Average Max Average Max Average Max Average Max
100 0.65 11.80 257 4281 6.4 23 229 4001 6.02 22
110 0.76 11.48 332.3 4540 6.5 25 294 3773 6.3 25
120 1.29 19.78 438.4 5915 6.97 25 369.7 4972 6.6 26
130 1.72 3283 539.9 8560 7.4 27 462.7 6559 7.01 27
140 2.51 40.60 727.5 13 327 7.7 28 588.9 7015 7.3 28
150 316 66.72 810.8 15178 8.2 31 634 11 206 7.60 31
160 5.05 65.65 1092.3 13 105 8.98 29 873.3 7601 8.3 29
170 10.39 252.27 1966.7 37 491 2.3 33 1382.8 21 498 8.69 33
180 10.13 188.50 1971.8 29 236 9.7 35 1547.8 19 954 3.0 35
190 3410 668.02 4267.2 74 246 10.5 37 2896 40 707 99 37
200 52.80 1301.82 61739 10 5904 1.5 42 4019 56 139 10.7 42

Szwarc and Mukhopadhyay (1996) also report that, for
n = 150, the maximum number of nodes and the maxi-
mum depth of the tree are 455 233 and 36, respectively.
For BETA, the maximum number of nodes is 15 178 and
the maximum depth of the tree is 31 for n = 150 if LEFT
is used. The corresponding numbers are 11 206 and 31 if
LEFT-RIGHT is used. The significant difference in the
worst case performance may come from the use of dif-
ferent test sets. For this reason, we generated 50 addi-
tional random instances for the same r for the most
difficult category (R,7)=(0.2,0.6). This caused the
maximum number of branches and the maximum depth
of the tree to go up to 49 360 and 38, respectively. The
main reason for the reduction in the number of branches
is the combined use of various tools (optimality check,
exact, key position, and branch decomposition with 5c,
f-bound, found-solved) whose effects are magnified due
to the continuous reformation of the data at the nodes of
the search tree. A particularly effective tool among these
seems to be found-solved as we observed in many runs
that the same set of subproblems have been encountered
in different branches of the tree,

Based on these comparisons, it is reasonable to con-
clude that BETA performs considerably better than the
previous state-of-the-art algorithms in terms of the
average CPU times, the average rate of increase in CPU
times, the average number of branches, and the average

depth of the tree as welil as in the maximum number of
nodes and the maximum depth of the tree.

8. Beta-based heuristics

In this section, we give two new constructive heuristics
based on the algorithm BETA. The first heuristic,
HEURBETA, first computes the pf-sequence using
LEFT-RIGHT. If the optimality check fails, it looks for
exact or key position decomposition (Theorems 2 and 3).
If no job qualifies for exact decomposition, it decomposes
the problem by assigning the longest job to the first
(smallest) position which qualifies for branch decompo-
sition {Theorem 4). The resulting subproblems are han-
dled in the same way. HEURBETA is an O(»*) procedure
since, in each pass, at least one job is fixed followed by the
f-sequence computation which takes O(r?)}. The second
heuristic, INITBETA, simply computes the f-sequence
using LEFT-RIGHT and takes it as the solution.
INITBETA is an O(n?) procedure.

In Table 9, we give a comparison of these heuristics, in
terms of the average and maximum observed deviations
from optimality, with three well known heuristics: the
PSK heuristic of Panwalkar et af. (1993), the ATC (Ap-
parent Tardiness Cost), heuristic of Rachamadugu and
Morton, (1981) and the MDD (Modified Due Date),

Table 9. Average (maximum) percent deviations of heuristics from optimality

n = 100 n = 200 a = 300 n = 400 n = 3500 Overall
HEURBETA 1.6 (1) L6 (1) 1.3 (12) 1.2 (12) 0.9 (5) 1.32 (12}
PSK 7.7 (72) 6.1 (00} 3.3(16) 5.8 (222) 9.8 (585) 6.54 (c0)
INITBETA 22.4 (88) 21 (86) 19.1 (92) 20.6 (104) 17.4 (93) 20.1 (104)
ATC 45.7 (110) 46.9 (107) 47.3 (96) 47.6 (104) 41.2 (100) 457 (110)
MDD 47.8 (110) 48.7 (110) 49.3 (99) 49.2 (104) 42.5 (104) 47.5(110)
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heuristic of Baker and Bertrand (1982). The statistics are
based on the same set of 970 test problems that are solved
lo optimality by the algorithm BETA for
n = 100,200, 300,400, 500. Even though there are various
other heuristics in the single machine literature (Wilker-
son and lrwin, 1971; Fry et al., 1989; Holsenback and
Russel, 1992), we choose the above three heuristics for
comparison because PSK is the most successful one re-
ported in the literature for 1//%° T, while MDD and
ATC are the two most frequently used heuristics in the
general scheduling literature.

In Table 9, the deviations are computed via the for-
mula

VAT

T X IOOOA),

where Zy and Z are the total tardiness values of the
heuristic and the optimal solutions, respectively, In terms
of the average deviation from optimality, HEURBETA
shows the best performance with an average deviation of
about 1.3% while the closest competitor PSK yields an
average deviation of about 6.5%. The superiority of
HEURBETA is much more pronounced in terms of
maximum deviations. The maximum observed deviation
of HEURBETA from optimality is 12% whereas PSK
yields a maximum deviation of 585% (barring one-in-
stance which yielded o0% due to the optimal objective
value being zero). INITBETA is more primitive than
HEURBETA, but it performs reasonably well with an
average deviation of about 20% which is poorer than
PSK but significantly better than ATC and MDD whose
average deviations are close to 50%. In terms of maxi-
mum deviations, INITBETA, ATC and MDD perform
nearly the same with a maximum deviation of about
100% which is significantly better than that of PSK.

In terms of CPU seconds, the average running time for
INITBETA is essentially the same as that of the others
while the average running time of HEURBETA is about
five or six times the others. Since all of these heuristics run
in the order of seconds (e.g., a few seconds for n = 500 for
HEURBETA), the difference in average CPU seconds
seems insignificant relative to the substantial improve-
ment obtained by HEURBETA in terms of the average
and maximun deviations from optimality. We note also
that all of these heuristics require O{n) storage. In par-
ticular, the remarkable success of HEURBETA in terms
of the maximum deviation is noteworthy. This heuristic
provides a new practical tool for solving very large
problems in a few seconds with a maximum expected
deviation of only 12%.

9, Concluding remarks

This paper presents a new algorithm for 1// 3" 7;. The
proposed algorithm is based on an integration and
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enhancement of the existing theory. Its main components
consist of a simple optimality check, new decomposition
theory, a new lower bound, a check for presolved sub-
problems, and modified versions of existing theorems that
are enhanced through the use of an equivalence concept
which permits a repeated modification of the data. The
use of these techniques provides substantial savings in
bookkeeping and solution time. The combined effect is
the ability to solve much larger size problems (e.g.,
n = 500) than previously available in the literature. Ex-
tensive computational tests with the new exact algorithm
BETA and the heuristic algorithm HEURBETA indicate
a significant performance superiority over the existing
exact and heuristic algorithms.
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Appendix

The example below illustrates the steps of the algorithm
BETA.

Suppose we have 10 jobs to schedule corresponding to
the data plotted in Fig. Al. According to the steps of the
algorithm, we first apply LEFT to obtain the ff-sequence
(5,1,7,8,3,4,2,6,9,10) shown in Fig. A2.

Jobs 5,1,7,8,3, 4 pass the fS-test, but job 2 fails. Since
we find at least one job failing, we cannot conclude that
the f-sequence is optimum. Then we look at the exact
decomposition and try to decompose if possible. From
Fig. Al we see that RD; = (). This means that the first
condition of the exact decomposition theorem is satisfied.
Since LU7 = {2, 3,4, 6} the second condition to check is if
pi+ f; > L7 Vi€ LU; and we find that the inequality is
valid for all the jobs in LU5. Thus the problem decom-
poses with job 7 at position 3 forming two subproblems.
One problem has only two jobs {1,5} and the other
problem has 7 jobs {2,3,4,6,8,9,10}.

For the two job case we can easily find the optimum
sequence. It happens to be (5, 1). For the second problem
we apply the algorithm once more. The #-sequence con-
structed for this subproblem is (8, 3, 4, 2, 6,9, 10). We try
the p-test first. The test fails so we try exact decomposi-
tion. Note that the right-down and left-up sets of job 9
are empty. Hence, the problem decomposes with job 9 at
position 6, with job 10 in the up-set and the others in the
down-set. After the decomposition with job 9, the down-
set {2,3,4,6,8} will be solved. It decomposes with job 6
in the last position. At this stage, jobs 7,9, 6 are already in
fixed positions (these are the jobs that qualified for exact
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Fig. A2. Graph of f-values.

decomposition). With fixed jobs shown in bold, we have
the following partial sequence where jobs in the brackets
define independent subproblems.

{51}7{2,3,4,8} 6 9{10}.

The only non-trivial subproblem is the one corresponding
to the job population {2,3,4,8} in the middle. Thus the
problem is now to schedule four jobs {2,3,4,8}. For
these jobs, the f-sequence is (8, 3, 4, 2) and the f-test, the
exact decomposition, and key position decomposition
fail. Hence, we apply branch decomposition using the
longest job (job 8).

According to Theorem 4 and Rule 5¢ we find two al-
ternative decompositions for job 8: the position it stays in
the f-sequence (from (i) of Theorem 4 since the second
job in the ff-sequence gets a strict pass in the f-test) and
the last position (from (iii) of Theorem 4 since the last job
gets a fail in the f-test). So, we continue with two
branches. In the first branch we fix job 8 at the first po-
sition and then schedule the set {2,3,4}. In this branch,
the ff-sequence is (3,2,4) and this happens to be the op-
timum sequence for this job population. In the second
branch, job § is placed in the last position and the other
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jobs 2,3,4 are to be scheduled before it. The second
branch yields an optimum for its subproblem which is no
better than the first branch. Hence, the final optimum
sequence is (5,1,7,8,3,2,4,6,9,10).
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