486 research outputs found

    Perceptually Realistic Behavior through Alibi Generation

    Get PDF
    Real-time pedestrian simulation for open-world games involves aggressive behavior simplification and culling to keep computational cost under control, but it is diffficult to predict whether these techniques will become unrealistic in certain situations. We propose a method of perceptually simulating highly realistic pedestrian behavior in virtual cities in real- time. Designers build a highly realistic simulation, from which a perceptually identical “perceptual simulation” is generated. Although the perceptual simulation simulates only a small portion of the world at a time, and does so with inexpensive approximations, it can be statistically guaranteed that the results are perceptually indistinguishable from those of the original simulation

    You\u27re My Boy

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4932/thumbnail.jp

    I\u27ve Got Everything I Want But You

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1438/thumbnail.jp

    Generating Plausible Individual Agent Movements From Spatio-Temporal Occupancy Data

    Get PDF
    We introduce the Spatio-Temporal Agent Motion Model, a datadriven representation of the behavior and motion of individuals within a space over the course of a day. We explore different representations for this model, incorporating different modes of individual behavior, and describe how crowd simulations can use this model as source material for dynamic and realistic behaviors

    A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Molecular Interaction Map (MIM) notation offers a standard set of symbols and rules on their usage for the depiction of cellular signaling network diagrams. Such diagrams are essential for disseminating biological information in a concise manner. A lack of software tools for the notation restricts wider usage of the notation. Development of software is facilitated by a more detailed specification regarding software requirements than has previously existed for the MIM notation.</p> <p>Results</p> <p>A formal implementation of the MIM notation was developed based on a core set of previously defined glyphs. This implementation provides a detailed specification of the properties of the elements of the MIM notation. Building upon this specification, a machine-readable format is provided as a standardized mechanism for the storage and exchange of MIM diagrams. This new format is accompanied by a Java-based application programming interface to help software developers to integrate MIM support into software projects. A validation mechanism is also provided to determine whether MIM datasets are in accordance with syntax rules provided by the new specification.</p> <p>Conclusions</p> <p>The work presented here provides key foundational components to promote software development for the MIM notation. These components will speed up the development of interoperable tools supporting the MIM notation and will aid in the translation of data stored in MIM diagrams to other standardized formats. Several projects utilizing this implementation of the notation are outlined herein. The MIM specification is available as an additional file to this publication. Source code, libraries, documentation, and examples are available at <url>http://discover.nci.nih.gov/mim</url>.</p

    CRAM It! A Comparison of Virtual, Live-Action and Written Training Systems for Preparing Personnel to Work in Hazardous Environments

    Get PDF
    In this paper we investigate the utility of an interactive, desktopbased virtual reality (VR) system for training personnel in hazardous working environments. Employing a novel software model, CRAM (Course Resource with Active Materials), we asked participants to learn a specific aircraft maintenance task. The evaluation sought to identify the type of familiarization training that would be most useful prior to hands on training, as well as after, as skill maintenance. We found that participants develop an increased awareness of hazards when training with stimulating technology – in particular (1) interactive, virtual simulations and (2) videos of an instructor demonstrating a task – versus simply studying (3) a set of written instructions. The results also indicate participants desire to train with these technologies over the standard written instructions. Finally, demographic data collected during the evaluation elucidates future directions for VR systems to develop a more robust and stimulating hazard training environment

    Real-Time Evacuation Simulation in Mine Interior Model of Smoke and Action

    Get PDF
    Virtual human crowd models have been used in the simulation of building and urban evacuation, but have not yet applied to underground coal mine operations and escape situations with emphasis on smoke, fires and physiological behaviors. We explore this through a real-time simulation model, MIMOSA (Mine Interior Model Of Smoke and Action), which integrates an underground coal mine virtual environment, a fire and smoke propagation model, and a human physiology and behavior model. Each individual agent has a set of physiological parameters as variables of time and environment, simulating a miner’s physiological condition during normal operations as well as during emergencies due to fire and smoke. To obtain appropriate agent navigation in the mine environment, we have extended the HiDAC framework (High- Density Autonomous Crowds) navigation from a grid-based cell-portal graph to a geometrybased portal path and integrated a novel cellportal and shortest path visibility algorithm

    Location of upper borders of cavities containing dust and gas under pressure in comets

    Full text link
    The distance between the pre-impact surface of Comet 9P/Tempel 1 and the upper border of the largest cavity excavated during ejection of material after the collision of the impact module of the Deep Impact spacecraft with the comet is estimated to be about 5-6 metres if the diameter of the DI transient crater was about 150-200 m. The estimated distance was 4 m at the diameter was 100 m. This result suggests that cavities containing dust and gas under pressure located a few metres below surfaces of comets can be frequent.Comment: Monthly Notices of Royal Astronomical Society, 2012, in press, 7 page

    Stroke Severity Predicted by Aortic Atheroma Detected by Ultra-Fast and Cardiac-Gated Chest Tomography†

    Get PDF
    Background and Purpose: The presence of aortic atherosclerosis is an independent risk factor for secondary stroke. The present study was designed to have an initial exploration of the correlation between the load and extent of aortic atheroma (AA) and initial stroke severity or clinical outcome 3 months after stroke. Methods: Cardiac-gated chest tomography (CGCT) was used to detect and measure AA in patients with acute ischemic stroke as shown by our group in prior prospective studies and this is part four sub-exploratory study of the same cohort. The National Institute of Health Stroke Scale (NIHSS) was used to assess the initial stroke severity, and the modified Rankin Scale (mRS) was used to assess 3-month outcome. Results: Thirty-two patients underwent CGCT for evaluation of AA, and 21 were found to have AA. AA was more prevalent in patient with NIHSS >6 (14/17 versus 7/15, p-value 0.03). Applying the multiple logistic regression and propensity score adjustment (using the propensity of having AA given the baseline features as covariates) showed a non-significant trend that AA is three times more likely to be associated with NIHSS >6 (p = 0.08, OR 3.08, 95% CI 0.94–13.52). There was no evidence of association of AA with 3-month functional outcome (mRS): 11/14 (78.6%) mRS >1 had AA, and 10/18 (55.5%) of those with mRS ≤1 had AA (p = 0.27). Conclusion: In our current study with limited sample number and exploratory nature, the presence of AA on CGCT with acute ischemic stroke patients may be associated with worse neurological deficit at presentation. There was no evidence of association with 3-month functional outcome using the mRS

    Science Communication Demands a Critical Approach That Centers Inclusion, Equity, and Intersectionality

    Get PDF
    We live in an era of abundant scientific information, yet access to information and to opportunities for substantive public engagement with the processes and outcomes of science are still inequitably distributed. Even with increasing interest in science communication and public engagement with science, historically marginalized and minoritized individuals and communities are largely overlooked and undervalued in these efforts. To address this gap, this paper aims to define inclusive science communication and clarify and amplify the field. We present inclusive science communication as one path forward to redress the systemic problems of inequitable access to and engagement with STEMM (science, technology, engineering, mathematics, and medicine). We describe the first national Inclusive Science Communication (InclusiveSciComm) Symposium held in the U.S. Based on the experience of organizing the symposium, we discuss recommendations for other convenings to help build a community of practice for inclusive science communication. In both research and practice, we advocate for more experimentation to help make inclusive science communication the future of science communication writ large, in order to engage diverse publics in their multiple ways of knowing and expand a sense of belonging in STEMM
    corecore