37 research outputs found

    Domain 2 of Drosophila Para voltage-gated sodium channel confers insect properties to a rat brain channel

    No full text
    The ability of the excitatory anti-insect-selective scorpion toxin AahIT (Androctonus australis hector) to exclusively bind to and modify the insect voltage-gated sodium channel (NaCh) makes it a unique tool to unravel the structural differences between mammalian and insect channels, a prerequisite in the design of selective pesticides. To localize the insect NaCh domain that binds AahIT, we constructed a chimeric channel composed of rat brain NaCh alpha-subunit (rBIIA) in which domain-2 (D2) was replaced by that of Drosophila Para (paralytic temperature-sensitive). The choice of D2 was dictated by the similarity between AahIT and scorpion beta- toxins pertaining to both their binding and action and the essential role of D2 in the beta-toxins binding site on mammalian channels. Expression of the chimera rBIIA-ParaD2 in Xenopus oocytes gave rise to voltage-gated and TTX-sensitive NaChs that, like rBIIA, were sensitive to scorpion alpha-toxins and regulated by the auxiliary subunit beta(1) but not by the insect TipE. Notably, like Drosophila Para/TipE, but unlike rBIIA/beta(1), the chimera gained sensitivity to AahIT, indicating that the phyletic selectivity of AahIT is conferred by the insect NaCh D2. Furthermore, the chimera acquired additional insect channel properties; its activation was shifted to more positive potentials, and the effect of alpha- toxins was potentiated. Our results highlight the key role of D2 in the selective recognition of anti-insect excitatory toxins and in the modulation of NaCh gating. We also provide a methodological approach to the study of ion channels that are difficult to express in model expression systems

    Domain 2 of Drosophila Para voltage-gated sodium channel confers insect properties to a rat brain channel

    No full text
    The ability of the excitatory anti-insect-selective scorpion toxin AahIT (Androctonus australis hector) to exclusively bind to and modify the insect voltage-gated sodium channel (NaCh) makes it a unique tool to unravel the structural differences between mammalian and insect channels, a prerequisite in the design of selective pesticides. To localize the insect NaCh domain that binds AahIT, we constructed a chimeric channel composed of rat brain NaCh alpha-subunit (rBIIA) in which domain-2 (D2) was replaced by that of Drosophila Para (paralytic temperature-sensitive). The choice of D2 was dictated by the similarity between AahIT and scorpion beta- toxins pertaining to both their binding and action and the essential role of D2 in the beta-toxins binding site on mammalian channels. Expression of the chimera rBIIA-ParaD2 in Xenopus oocytes gave rise to voltage-gated and TTX-sensitive NaChs that, like rBIIA, were sensitive to scorpion alpha-toxins and regulated by the auxiliary subunit beta(1) but not by the insect TipE. Notably, like Drosophila Para/TipE, but unlike rBIIA/beta(1), the chimera gained sensitivity to AahIT, indicating that the phyletic selectivity of AahIT is conferred by the insect NaCh D2. Furthermore, the chimera acquired additional insect channel properties; its activation was shifted to more positive potentials, and the effect of alpha- toxins was potentiated. Our results highlight the key role of D2 in the selective recognition of anti-insect excitatory toxins and in the modulation of NaCh gating. We also provide a methodological approach to the study of ion channels that are difficult to express in model expression systems

    Scorpion alpha and alpha-like toxins differentially interact with sodium channels in mammalian CNS and periphery.

    No full text
    Scorpion alpha-toxins from Leiurus quinquestriatus hebraeus, LqhII and LqhIII, are similarly toxic to mice when administered by a subcutaneous route, but in mouse brain LqhII is 25-fold more toxic. Examination of the two toxins effects in central nervous system (CNS), peripheral preparations and expressed sodium channels revealed the basis for their differential toxicity. In rat brain synaptosomes, LqhII binds with high affinity, whereas LqhIII competes only at high concentration for LqhII-binding sites in a voltage-dependent manner. LqhII strongly inhibits sodium current inactivation of brain rBII subtype expressed in HEK293 cells, whereas LqhIII is weakly active at 2 microM, suggesting that LqhIII affects sodium channel subtypes other than rBII in the brain. In the periphery, both toxins inhibit tetrodotoxin-sensitive sodium current inactivation in dorsal root ganglion neurons, and are strongly active directly on the muscle and on expressed muI channels. Only LqhII, however, induced repetitive end-plate potentials in mouse phrenic nerve-hemidiaphragm muscle preparation by direct effect on the motor nerve. Thus, rBII and sodium channel subtypes expressed in peripheral nervous system (PNS) serve as the main targets for LqhII but are mostly not sensitive to LqhIII. Toxicity of both toxins in periphery may be attributed to the direct effect on muscle. Our data elucidate, for the first time, how different toxins affect mammalian central and peripheral excitable cells, and reveal unexpected subtype specificity of toxins that interact with receptor site 3
    corecore