215 research outputs found

    Transparency on scientific instruments

    Full text link
    Scientists and commercial scientific instrument makers have a shared incentive against discloseing an instrument maker's contributions to research. Stricter rules to encourage reporting of such collaboration would help to improve transparency and reproducibility

    Conceptual and Measurement Issues in Assessing Democratic Backsliding

    Get PDF
    During the past decade, analyses drawing on several democracy measures have shown a global trend of democratic retrenchment. While these democracy measures use radically different methodologies, most partially or fully rely on subjective judgments to produce estimates of the level of democracy within states. Such projects continuously grapple with balancing conceptual coverage with the potential for bias (Munck and Verkuilen 2002; Przeworski et al. 2000). Little and Meng (L&M) (2023) reintroduce this debate, arguing that “objective” measures of democracy show little evidence of recent global democratic backsliding.1 By extension, they posit that time-varying expert bias drives the appearance of democratic retrenchment in measures that incorporate expert judgments. In this article, we engage with (1) broader debates on democracy measurement and democratic backsliding, and (2) L&M’s specific data and conclusions

    A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 1. Engineering Design and Instrumentation

    Get PDF
    In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS

    A dynamic explanation for the origin of the western Mediterranean organic-rich layers

    Get PDF
    The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing

    Efficacy and tolerability of intravenous methylergonovine in migraine female patients attending the emergency department: a pilot open-label study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylergonovine is an ergot alkaloid widely used in postpartum women. It is also an active metabolite of methysergide and previous studies suggest that it could be effective against refractory headache and cluster headache. The purpose of the present study was to assess the potential therapeutic effectiveness of methylergonovine in the emergency treatment of severe migraine.</p> <p>Methods</p> <p>One hundred and twenty five female patients with migraine attending the emergency department received 0.15 mg of methylergonovine intravenously. Pain intensity, heart rate, blood pressure, and methylergonovine side effects were checked 5, 10, 15, 30 and 60 minutes after drug administration. An additional 0.075 mg dose of methylergonovine was administered to those patients who did not experienced relevant pain relief 15 minutes after dosing. </p> <p>Results</p> <p>Pain intensity decreased markedly from the first minutes after dosing, the 74.4% of patients being pain free at 60 minutes. Only seven patients required an additional dose of methylergonovine. Nausea and vomiting were the most relevant side effects related with methylergonovine administration (84% of patients). A substantial decrease (10 to 25 mmHg) in systolic blood pressure values was observed in 56% of the patients. A significant correlation (p < 0.0001) was found between the decrease in pain intensity and the reduction of systolic blood pressure.</p> <p>Conclusion</p> <p>Although limited by the non-controlled design of the study, our data suggest that intravenous methylergonovine can be an effective and safe drug in the management of severe migraine attacks in the emergency room.</p

    Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans

    Get PDF
    Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.ope

    Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis

    Get PDF
    Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography–defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared “permanent” because they did not dissolve in dilute BALF matrix, they could be solubi-lized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy

    Myotis rufoniger genome sequence and analyses: M-rufoniger&apos;s genomic feature and the decreasing effective population size of Myotis bats

    Get PDF
    Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66x fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10x coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger&apos;s red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has batspecific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat&apos;s reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since similar to 30k years ago. M. rufoniger&apos;s effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity
    corecore