12 research outputs found

    Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K

    Get PDF
    On compressing low-density amorphous ice (LDA) at 125 K up to 1.6 GPa, two distinct density steps accompanied by heat evolution are observable in pressure-density curves. Samples recovered to 77 K and 1 bar after the first and second steps show the x-ray diffraction pattern of high-density amorphous ice (HDA) and very HDA (VHDA), respectively. The compression of the once formed HDA takes place linearly in density up to 0.95 GPa, where nonlinear densification and HDA -> VHDA conversion is initiated. This implies a stepwise formation process LDA -> HDA -> VHDA at 125 K, which is to the best of our knowledge the first observation of a stepwise amorphous-amorphous-amorphous transformation sequence. We infer that the relation of HDA and VHDA is very similar to the relation between LDA and HDA except for a higher activation barrier between the former. We discuss the two options of thermodynamic versus kinetic origin of the phenomenon

    Polyamorphism of Ice

    No full text

    High Density Amorphous Ice from Cubic Ice

    No full text

    Overview of ASDEX Upgrade Results

    No full text

    Overview of ASDEX Upgrade results

    Get PDF
    ASDEX Upgrade was operated with a fully W-covered wall in 2007 and 2008. Stationary H-modes at the ITER target values and improved H-modes with H up to 1.2 were run without any boronization. The boundary conditions set by the full W wall (high enough ELM frequency, high enough central heating and low enough power density arriving at the target plates) require significant scenario development, but will apply to ITER as well. D retention has been reduced and stationary operation with saturated wall conditions has been found. Concerning confinement, impurity ion transport across the pedestal is neoclassical, explaining the strong inward pinch of high-Z impurities in between ELMs. In improved H-mode, the width of the temperature pedestal increases with heating power, consistent with a scaling. In the area of MHD instabilities, disruption mitigation experiments using massive Ne injection reach volume averaged values of the total electron density close to those required for runaway suppression in ITER. ECRH at the q = 2 surface was successfully applied to delay density limit disruptions. The characterization of fast particle losses due to MHD has shown the importance of different loss mechanisms for NTMs, TAEs and also beta-induced Alfven eigenmodes (BAEs). Specific studies addressing the first ITER operational phase show that O1 ECRH at the HFS assists reliable low-voltage breakdown. During ramp-up, additional heating can be used to vary li to fit within the ITER range. Confinement and power threshold in He are more favourable than in H, suggesting that He operation could allow us to assess H-mode operation in the non-nuclear phase of ITER operation
    corecore