2,868 research outputs found

    Assessment of Biosignals for Managing a Virtual Keyboard

    Get PDF
    In this paper we propose an assessment of biosignals for handling an application based on virtual keyboard and automatic scanning. The aim of this work is to measure the effect of using such application, through different interfaces based on electromyography and electrooculography, on cardiac and electrodermal activities. Five people without disabilities have been tested. Each subject wrote twice the same text using an electromyography interface in first test and electrooculography in the second one. Each test was divided into four parts: instruction, initial relax, writing and final relax. The results of the tests show important differences in the electrocardiogram and electrodermal activity among the parts of tests.Junta de Andalucía p08-TIC-363

    Systemic inflammation and acute-on-chronic liver failure: too much, not enough

    Get PDF
    ACLF is a specific, but complex and multifactorial form of acute decompensation of cirrhosis and is characterized by an extraordinary dynamic natural course, rapidly evolving organ failure, and high short-term mortality. Dysbalanced immune function is central to its pathogenesis and outcome with an initial excessive systemic inflammatory response that drives organ failure and mortality. Later in its course, immuno-exhaustion/immunoparalysis prevails predisposing the patient to secondary infectious events and reescalation in end-organ dysfunction and mortality. The management of patients with ACLF is still poorly defined. However, as its pathophysiology is gradually being unravelled, potential therapeutic targets emerge that warrant further study such as restoring or substituting albumin via plasma exchange or via albumin dialysis and evaluating usefulness of TLR4 antagonists, modulators of gut dysbiosis (pre- or probiotics), and FXR-agonists

    Universal behavior of localization of residue fluctuations in globular proteins

    Full text link
    Localization properties of residue fluctuations in globular proteins are studied theoretically by using the Gaussian network model. Participation ratio for each residue fluctuation mode is calculated. It is found that the relationship between participation ratio and frequency is similar for all globular proteins, indicating a universal behavior in spite of their different size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.

    Decentralization in the Netherlands: from blueprints to tailor-made services?

    Get PDF
    The politics and administration of institutional chang

    Pyocin S5 import into Pseudomonas aeruginosa reveals a generic mode of bacteriocin transport

    Get PDF
    Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria

    Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM(4-) siderophore analogues of varied linker length

    Get PDF
    Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM(4-)) to five, six and eight (5-, 6-, 8-LICAM(4-), respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM(4-) structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM(4-) is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM(4-) but decreases for 6- and 8-LICAM(4-). The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288
    corecore