44 research outputs found

    Recognition of the Phanerozoic “Young Granite Gneiss” in the central Yeongnam Massif

    Get PDF
    Up to now, all the high-grade gneisses of the Korean peninsula have been regarded as Precambrian basement rocks and presence of the Phanerozoic high-grade metamorphic rocks have remained unknown. However, such granite gneiss is discovered through this study from the central Yeongnam massif near Gimcheon. SHRIMP zircon U-Pb age determinations on the granite gneiss, having well-developed gneissic foliations and migmatitic textures, reveal concordant age of ca. 250 Ma indicating the Early Triassic emplacement of this pluton, which is in contradict to the previous belief that it is a Precambrian product. Even though the granite gneiss reveals well-developed gneissic foliations and some zircons show rather low Th/U ratios, the metamorphic age has not been determined successfully. However, the age of metamorphism can be constrained as middle Triassic considering the absence of any evidences of metamorphism from the nearby granitic plutons having emplacement ages of ca. 225 Ma. Early Triassic emplacement and subsequent Middle Triassic metamorphism of the granite gneiss from the Yeongnam massif bear a remarkable resemblance to the case of South China block. We suggest the possibility that Early to Middle Triassic metamorphism of the Korean peninsula might be products of the intracontinental collisional events not directly related with the Early Triassic continental collision event

    Productive resistance within the public sector: exploring organisational culture

    Get PDF
    The article examines how South Korean civil servants responded to the introduction of pay for performance. Drawing upon 31 in-depth interviews with career civil servants, it identifies what became known as 1/n, a form of ‘discreet resistance’ that emerged and evolved. The analytical framework allows productive resistance to be seen as ebbing and flowing during organisational change that sees institutionalisation, deinstitutionalisation and re-institutionalisation. In understanding the cultural context of organisational resistance the contribution is three-fold. First, a nuanced definition and understanding of productive resistance. Second, it argues that productive resistance must be seen as part of a process that does not simply reflect ‘offer and counter-offer’ within the change management process. Thirdly, it identifies differences within groups and sub-cultures concerning commitment towards resistance and how these fissures contribute towards change as new interpretive schemes and justifications are presented in light of policy reformulations

    Global Functional Analyses of Cellular Responses to Pore-Forming Toxins

    Get PDF
    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∌0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs

    COIDS: A Clock Offset Based Intrusion Detection System for Controller Area Networks

    No full text
    Controller Area Network (CAN) is an in-vehicle communication protocol which provides an efficient and reliable communication link between Electronic Control Units (ECUs) in real-time. Recent studies have shown that attackers can take remote control of the targeted car by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we propose Clock Offset-based Intrusion Detection System (COIDS) to monitor in-vehicle network and detect any intrusion. Precisely, we first measure and then exploit the clock offset of transmitter ECU's clock for fingerprinting ECU. We next leverage the derived fingerprints to construct a baseline of ECU's normal clock behaviour using an active learning technique. Based on the baseline of normal behaviour, we use Cumulative Sum method to detect any abnormal deviation in clock offset. Particularly, if the deviation in clock offset exceeds an unexpected positive or negative value, COIDS declares this change as an intrusion. Further, we use sequential change-point detection technique to determine the exact time of intrusion. We perform exhaustive experiments on real-world publicly available datasets primarily to assess the effectiveness of COIDS against three most potential attacks on CAN, i.e., DoS, impersonation and fuzzy attacks. The results show that COIDS is highly effective in defending all these three attacks. Further, the results show that COIDS considerably faster in detecting intrusion compared to a state-of-the-art solution

    COIDS: A Clock Offset based Intrusion Detection System for Controller Area Networks

    No full text
    Controller Area Network (CAN) is an in-vehicle communication protocol which provides an efficient and reliable communication link between Electronic Control Units (ECUs) in real-time. Recent studies have shown that attackers can take remote control of the targeted car by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we propose Clock Offset-based Intrusion Detection System (COIDS) to monitor in-vehicle network and detect any intrusion. Precisely, we first measure and then exploit the clock offset of transmitter ECU\u27s clock for fingerprinting ECU. We next leverage the derived fingerprints to construct a baseline of ECU\u27s normal clock behaviour using an active learning technique. Based on the baseline of normal behaviour, we use Cumulative Sum method to detect any abnormal deviation in clock offset. Particularly, if the deviation in clock offset exceeds an unexpected positive or negative value, COIDS declares this change as an intrusion. Further, we use sequential change-point detection technique to determine the exact time of intrusion. We perform exhaustive experiments on real-world publicly available datasets primarily to assess the effectiveness of COIDS against three most potential attacks on CAN, i.e., DoS, impersonation and fuzzy attacks. The results show that COIDS is highly effective in defending all these three attacks. Further, the results show that COIDS considerably faster in detecting intrusion compared to a state-of-the-art solution
    corecore