664 research outputs found

    Increased prevalence of irritable bowel syndrome in patients with bronchial asthma

    Get PDF
    AbstractIrritable bowel syndrome (IBS) is one of the most common diseases of the gastrointestinal tract. IBS may represent a primary disorder of gastrointestinal motility, accompanied with motor dysfunction in various extraintestinal sites. Recent studies suggest that IBS is associated with bronchial hyper-responsiveness and bronchial asthma might be more prevalent in IBS patients than in control subjects. The aim of our study was to assess the prevalence of IBS in a cohort of asthmatic patients. We evaluated 150 patients with bronchial asthma (71 males and 79 females, aged 45.1±14.9 years) and two control groups including 130 patients with other pulmonary disorder and 120 healthy subjects. All subjects enrolled (asthmatic and controls) completed the Greek version of the Bowel Disease Questionnaire (BDQ). BDQ is a, previously validated, self-report instrument to measure gastrointestinal symptoms. Diagnosis of IBS was based on Rome II criteria. The IBS prevalence was significantly higher in asthmatics (62/150, 41.3%) than in subjects with other pulmonary disorders (29/130, 22.3%,P <0.001) and healthy ones (25/120, 20.8%, P<0.001). For all subjects studied, the prevalence of IBS was significantly higher in females (78/214, 36.4%) than in males (38/186, 20.4%, P<0.001). The IBS prevalence in asthmatic males was 29.5% vs. 15.2% in male patients with other pulmonary disorders (P=0.002) and 14.2% in male healthy subjects (P=0.002). The IBS prevalence in asthmatic females was 51.8% vs. 28.1% in females patients with other pulmonary disorders (P<0.001) and 26.5% in females healthy subjects (P<0.001). None of the asthma medications were associated with increased or decreased likelihood of IBS. We conclude that patients with bronchial asthma have an increased prevalence of IBS. Further studies are needed to clarify the potential pathogenetic mechanisms underlying the association between IBS and asthma

    Estimating Correspondences of Deformable Objects “In-the-wild”

    Get PDF
    During the past few years we have witnessed the development of many methodologies for building and fitting Statistical Deformable Models (SDMs). The construction of accurate SDMs requires careful annotation of images with regards to a consistent set of landmarks. However, the manual annotation of a large amount of images is a tedious, laborious and expensive procedure. Furthermore, for several deformable objects, e.g. human body, it is difficult to define a consistent set of landmarks, and, thus, it becomes impossible to train humans in order to accurately annotate a collection of images. Nevertheless, for the majority of objects, it is possible to extract the shape by object segmentation or even by shape drawing. In this paper, we show for the first time, to the best of our knowledge, that it is possible to construct SDMs by putting object shapes in dense correspondence. Such SDMs can be built with much less effort for a large battery of objects. Additionally, we show that, by sampling the dense model, a part-based SDM can be learned with its parts being in correspondence. We employ our framework to develop SDMs of human arms and legs, which can be used for the segmentation of the outline of the human body, as well as to provide better and more consistent annotations for body joints

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment

    Estimating correspondences of deformable objects "in-the-wild"

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordDuring the past few years we have witnessed the development of many methodologies for building and fitting Statistical Deformable Models (SDMs). The construction of accurate SDMs requires careful annotation of images with regards to a consistent set of landmarks. However, the manual annotation of a large amount of images is a tedious, laborious and expensive procedure. Furthermore, for several deformable objects, e.g. human body, it is difficult to define a consistent set of landmarks, and, thus, it becomes impossible to train humans in order to accurately annotate a collection of images. Nevertheless, for the majority of objects, it is possible to extract the shape by object segmentation or even by shape drawing. In this paper, we show for the first time, to the best of our knowledge, that it is possible to construct SDMs by putting object shapes in dense correspondence. Such SDMs can be built with much less effort for a large battery of objects. Additionally, we show that, by sampling the dense model, a part-based SDM can be learned with its parts being in correspondence. We employ our framework to develop SDMs of human arms and legs, which can be used for the segmentation of the outline of the human body, as well as to provide better and more consistent annotations for body joints.Engineering and Physical Sciences Research Council (EPSRC)TekesEuropean Community Horizon 202

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment

    Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications

    Get PDF
    Almost block diagonal (ABD) linear systems arise in a variety of contexts, specifically in numerical methods for two-point boundary value problems for ordinary differential equations and in related partial differential equation problems. The stable, efficient sequential solution of ABDs has received much attention over the last fifteen years and the parallel solution more recently. We survey the fields of application with emphasis on how ABDs and bordered ABDs (BABDs) arise. We outline most known direct solution techniques, both sequential and parallel, and discuss the comparative efficiency of the parallel methods. Finally, we examine parallel iterative methods for solving BABD systems. Copyright (C) 2000 John Wiley & Sons, Ltd
    • 

    corecore