2,718 research outputs found

    When Statutory Regimes Collide:Will Wisconsin Right to Life and Citizens United Invalidate Federal Tax Regulation of Campaign Activity?

    Get PDF
    In Federal Election Commission v. Wisconsin Right to Life (2007) and Citizens United v. Federal Elections Commission (2010), the United States Supreme Court dramatically reduced the ability of Congress to regulate campaign finance activities of corporations and others active in elections. Many of the same activities are still subject to restrictions by the Internal Revenue Code, which regulates the type and amount of political campaign activities that certain nonprofits exempt under federal tax law can engage in. In the wake of the campaign finance decisions, the constitutionality of the tax law’s restrictions on campaign activity is now being challenged in the lower courts. This Article analyzes the two recent campaign finance decisions and campaign finance precedents more broadly to determine how, if at all, the Roberts’ Court’s campaign finance jurisprudence is likely to alter existing tax law jurisprudence in the area of campaign activity. It finds that, for the most part, tax law constitutional doctrines have developed independently of other areas of First Amendment free speech law. Based upon an analysis of the distinctive tax law doctrines, the Article concludes that the tax law provision prohibiting section 501(c)(3) charities from engaging in campaigns is likely to withstand challenges arguing that the provision prevents these nonprofits from engaging in protected political speech. However, there is some likelihood that the tax law prohibition is vulnerable to constitutional attack under traditional doctrines of vagueness or overbreadth due to the lack of precision of the terms of the political prohibition, as these have been elaborated by the IRS and the courts to date

    One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model

    Get PDF
    We compute at the one-loop order the beta-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The beta-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.Comment: 16 pages, 9 figure

    Cognition-Enhancing Drugs: Can We Say No?

    Get PDF
    Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs

    Dynamical Symmetry Breaking in Planar QED

    Get PDF
    We investigate (2+1)-dimensional QED coupled with Dirac fermions both at zero and finite temperature. We discuss in details two-components (P-odd) and four-components (P-even) fermion fields. We focus on P-odd and P-even Dirac fermions in presence of an external constant magnetic field. In the spontaneous generation of the magnetic condensate survives even at infinite temperature. We also discuss the spontaneous generation of fermion mass in presence of an external magnetic field.Comment: 34 pages, 8 postscript figures, final version to appear on J. Phys.

    Hopping between Random Locations: Spectrum and Instanton

    Full text link
    Euclidean random matrices appear in a broad class of physical problems involving disorder. The problem of determining their spectra can be mapped, using the replica method, into the study of a scalar field theory with an interaction of the type e^(psi^2). We apply the instanton method to study their spectral tails.Comment: 9 pages, Revtex, 2 postscript figure

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    Oblique amplitude modulation of dust-acoustic plasma waves

    Full text link
    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on the angle Ξ\theta between the modulation and propagation directions. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations have also been discussed.Comment: 21 pages, 6 figures, to appear in Physica Script

    Microscopic Black Hole Pairs in Highly-Excited States

    Get PDF
    We consider the quantum mechanics of a system consisting of two identical, Planck-size Schwarzschild black holes revolving around their common center of mass. We find that even in a very highly-excited state such a system has very sharp, discrete energy eigenstates, and the system performs very rapid transitions from a one stationary state to another. For instance, when the system is in the 100th excited state, the life times of the energy eigenstates are of the order of 10−3010^{-30} s, and the energies of gravitons released in transitions between nearby states are of the order of 102210^{22} eV.Comment: 22 pages, 3 figures, uses RevTe

    Small-x QCD studies with CMS at the LHC

    Get PDF
    The capabilities of the CMS experiment to study the low-x parton structure and QCD evolution in the proton and the nucleus at LHC energies are presented through four different measurements, to be carried out in Pb-Pb at sqrt(s_NN) = 5.5 TeV: (i) the charged hadron rapidity density dNch/dηdN_{ch}/d\eta and (ii) the ultraperipheral (photo)production of Upsilon; and in p-p at sqrt(s) = 14 TeV: (iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by Deltaη≳Delta\eta\gtrsim 8).Comment: Quark Matter'06 Proceedings. To appear in J.Phys.
    • 

    corecore