29 research outputs found

    Evaluation of semi-automated cells counting in peritoneal fluid

    No full text
    ABSTRACTIntroduction:Currently, the cytological analysis of biological fluids, such as peritoneal fluid, is performed by manually cells counting in Fuchs-Rosenthal chamber. However, this method has a number of limitations. Because of these limitations, automatic counters have been evaluated for cell counting in this type of sample in order to make it faster and more reliable test.Objective:The aim of this study is to compare the manual and semi-automated leukocytes and erythrocytes counting in peritoneal fluid.Materials and methods:The samples were analyzed manually and using the CountessTM(Invitrogen).Results:The results showed that although there is a correlation between the two counting methods, the correlation is relatively low, for both leukocytes and erythrocytes analysis.Conclusion:The results suggest that peritoneal fluid should continue to be analyzed in Fuchs-Rosenthal chamber. However, further studies should be conducted with a greater number of samples to investigate the possibility of using automated cells counting in serous fluids and, thus, provide greater speed and quality of results

    Cystic Fibrosis Diagnosis in Newborns, Children, and Adults

    No full text
    The diagnosis of cystic fibrosis (CF) has traditionally relied on the presence of clinical features of the disease. Today, diagnosis through newborn screening (NBS) is becoming the standard of modern CF care. CF NBS programs can identify CF prior to clinical presentation, but for the advantages of an early diagnosis to accrue a scrupulous system must be in place to ensure all steps in the program are performing. As we move rapidly into the era of CF transmembrane conductance regulator (CFTR) protein modulators, the opportunity to start a presymptomatic infant, identified through CF NBS, on these agents offers the prospect of true disease-modifying interventions which could result in a paradigm shift in CF care. Conversely, the introduction of NBS has resulted in many children being asymptomatic at the time of diagnosis. Some screened newborns are classified as “CF Screening Positive, Inconclusive Diagnosis”, or “CFTR-related metabolic syndrome” when the diagnosis can neither be confirmed nor excluded. Appropriate assessment and follow-up should be arranged at specialist centers as a proportion of these infants and adults will eventually be diagnosed with CF. Symptoms and signs are particularly pertinent when considering a diagnosis of CF outside the context of NBS. In older patients with a late diagnosis, the spectrum of clinical presentation can be very variable with vigilant clinicians from multiple specialties suspecting the diagnosis in conditions such as recurrent pulmonary infections, male infertility, pancreatitis, nasal polyposis, and malabsorption. In addition to clinical symptoms or positive NBS results, sweat test and genetic analysis are cornerstones in the diagnosis of CF, but in some cases the diagnosis cannot be confirmed on genetic or sweat testing. Difficult diagnosis may be supported by in vivo or ex vivo electrophysiology measurements on respiratory or intestinal epithelia. This can be done by either measuring transepithelial nasal potential difference or intestinal current measurements

    Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    No full text
    Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article "Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells" (Chhuon et al., in press [1])

    Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells

    No full text
    We have previously shown (i) that the cystic fibrosis transmembrane regulator (CFTR) locates to lipid raft-like microdomains of epithelial cells upon TNF-α proinflammatory stimulation; and (ii) that TNF-α increases the membrane localization and the channel function of F508del-mutated CFTR. In the present work, we hypothesized that CFTR mutations modify the proteome of lipid rafts in the same proinflammatory conditions. We prepared lipid rafts from HeLa cells transfected with either wild-type or F508del-CFTR and incubated for 10min with 100U/mL of TNF-α. Proteins were extracted, trypsin digested, and peptides analyzed by high resolution MS. Proteins were quantified by a stable isotope labeling with amino acids in cell culture approach. Out of the 22 proteins differentially recruited in lipid rafts after proinflammatory exposure, 17 were increased in F508del cells with respect to wild-type, including two G-protein coupled receptors, three anion transporters, and one cell surface mucin. In both HeLa and bronchial epithelial cells we confirmed that G-protein coupled receptor 5A relocates to lipid rafts along with F508del-CFTR after TNF-α treatment. These results could enlighten the cross-talk between CFTR and TNF-α and its impact on the cell response to proinflammatory challenge

    Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    Get PDF
    Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article “Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells” (Chhuon et al., in press [1])

    Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCount™-BD and ISHAGE protocols

    No full text
    The total number of CD34+ cells is the most relevant clinical parameter when selecting human umbilical cord blood (HUCB) for transplantation. The objective of the present study was to compare the two most commonly used CD34+ cell quantification methods (ISHAGE protocol and ProCount™ - BD) and analyze the CD34+ bright cells whose 7-amino actinomycin D (7AAD) analysis suggests are apoptotic or dead cells. Twenty-six HUCB samples obtained at the Placental Blood Program of New York Blood Center were evaluated. The absolute numbers of CD34+ cells evaluated by the ISHAGE (with exclusion of 7AAD+ cells) and ProCount™ (with exclusion of CD34+ bright cells) were determined. Using the ISHAGE protocol we found 35.6 ± 19.4 CD34+ cells/”L and with the ProCount™ method we found 36.6 ± 23.2 CD34+ cells/”L. With the ProCount™ method, CD34+ bright cell counts were 9.3 ± 8.2 cells/”L. CD34+ bright and regular cells were individually analyzed by the ISHAGE protocol. Only about 1.8% of the bright CD34+ cells are alive, whereas a small part (19.0%) is undergoing apoptosis and most of them (79.2%) are dead cells. Our study showed that the two methods produced similar results and that 7AAD is important to exclude CD34 bright cells. These results will be of value to assist in the correct counting of CD34+ cells and to choose the best HUCB unit for transplantation, i.e., the unit with the greatest number of potentially viable stem cells for the reconstitution of bone marrow. This increases the likelihood of success of the transplant and, therefore, the survival of the patient

    Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering

    No full text
    Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine
    corecore