261 research outputs found
Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease
Background Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene. Deficiency of α-galactosidase A (α-Gal A) causes intracellular accumulations of globotriaosylceramide (GL-3) and related glycosphingolipids in all organs, including the kidney, often leading to end-stage renal failure. In women with Fabry disease, accumulation of GL-3 in the glomerular podocytes and other renal cells induces progressive, proteinuric nephropathy, but not as severe as in men. Enzyme replacement therapy (ERT) with recombinant α-Gal A reduces cellular GL-3 deposits in podocytes and tubular epithelial cells. We have previously shown that α-Gal A is delivered to these cells by different pathways involving different receptors. This study investigated the long-term changes in albuminuria, estimated glomerular filtration rate (eGFR) and urinary markers of both glomerular and tubular dysfunction in women with Fabry disease treated with ERT. Methods A retrospective, single centre, cohort study evaluated the long-term association between ERT, albuminuria and eGFR in 13 women with Fabry disease and mild renal involvement. In particular, we analysed the changes in the proteinuric profile, including the glomerular marker IgG, the tubular markers α1-microglobulin and retinol-binding protein (RBP), and the shared tubular and glomerular markers albumin and transferrin. Results ERT was associated with a significant reduction in albuminuria and a relatively stable eGFR. The decrease in albuminuria was paralleled by a decrease in both glomerular and tubular urine protein markers. Conclusions The data indicate that long-term ERT is associated with a reduction in albuminuria and glomerular and tubular urinary protein markers in women with Fabry disease and mild renal manifestation
Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase
Tau neuronal protein has a central role in neurodegeneration and is implicated in Alzheimer disease development. Abnormal phosphorylation of Tau impairs its interaction with other proteins and is associated with its dysregulation in pathological conditions. Molecular mechanisms leading to hyperphosphorylation of Tau in pathological conditions are unknown. Here, we characterize phosphorylation of Tau by extracellular-regulated kinase (ERK2), a mitogen-activated kinase (MAPK) that responds to extracellular signals. Analysis of in vitro phosphorylated Tau by activated recombinant ERK2 with nuclear magnetic resonance spectroscopy (NMR) reveals phosphorylation of 15 Ser/Thr sites. In vitro phosphorylation of Tau using rat brain extract and subsequent NMR analysis identifies the same sites. Phosphorylation with rat brain extract is known to transform Tau into an Alzheimer disease-like state. Our results indicate that phosphorylation of Tau by ERK2 alone is sufficient to produce the same characteristics. We further investigate the mechanism of ERK2 phosphorylation of Tau. Kinases are known to recognize their protein substrates not only by their specificity for a targeted Ser or Thr phosphorylation site but also by binding to linear-peptide motifs called docking sites. We identify two main ERK2 docking sites in Tau sequence using NMR. Our results suggest that ERK2 dysregulation in Alzheimer disease could lead to abnormal phosphorylation of Tau resulting in the pathology of the disease.This work was supported by TGE RMN THC (FR-3050, France) and FRABio (Lille University, CNRS, FR 3688) and also by a grant from the LabEx (Laboratory of Excellence), DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer's disease), and in part by the French government funding agency Agence Nationale de la Recherche TAF. This work was supported by National Institutes of Health Grant R01 GM081578 (to S. P. and J. G.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health
A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses
BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas
Development of Epitope-Blocking ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses
10.1371/journal.pone.0004566PLoS ONE4
Feature selection using Haar wavelet power spectrum
BACKGROUND: Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented signal processing domains are not probed much when other fields like image and video processing utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum in the problem of clustering and gene selection based on expression data in the context of disease classification and to propose a method based on Haar wavelet power spectrum. RESULTS: Haar wavelet power spectra of genes were analysed and it was observed to be different in different diagnostic categories. This difference in trend and magnitude of the spectrum may be utilized in gene selection. Most of the genes selected by earlier complex methods were selected by the very simple present method. Each earlier works proved only few genes are quite enough to approach the classification problem [1]. Hence the present method may be tried in conjunction with other classification methods. The technique was applied without removing the noise in data to validate the robustness of the method against the noise or outliers in the data. No special softwares or complex implementation is needed. The qualities of the genes selected by the present method were analysed through their gene expression data. Most of them were observed to be related to solve the classification issue since they were dominant in the diagnostic category of the dataset for which they were selected as features. CONCLUSION: In the present paper, the problem of feature selection of microarray gene expression data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering and feature selection method useful for classification based on Haar wavelet power spectrum. Application of this technique in this area is novel, simple, and faster than other methods, fit for a wide range of data types. The results are encouraging and throw light into the possibility of using this technique for problem domains like disease classification, gene network identification and personalized drug design
Mannose 6-Phosphate Receptor and Sortilin Mediated Endocytosis of α-Galactosidase A in Kidney Endothelial Cells
Prominent vasculopathy in Fabry disease patients is caused by excessive intracellular accumulation of globotriaosylceramide (GL-3) throughout the vascular endothelial cells causing progressive cerebrovascular, cardiac and renal impairments. The vascular lesions lead to myocardial ischemia, atherogenesis, stroke, aneurysm, thrombosis, and nephropathy. Hence, injury to the endothelial cells in the kidney is a key mechanism in human glomerular disease and endothelial cell repair is an important therapeutic target. We investigated the mechanism of uptake of α-galactosidase A (α-Gal A) in renal endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed that recombinant protein localize in the endothelial cells of the kidney. Affinity purification studies using α-Gal A resins identified M6PR and sortilin as α-Gal A receptors in cultured glomerular endothelial cells. Immunohistochemical analyses of normal human kidney with anti-sortilin and anti-M6PR showed that sortilin and M6PR were expressed in the endothelium of smaller and larger vessels. Uptake studies in cultured glomerular endothelial cells of α-Gal A labeled with fluorescence and 125I showed by inhibition with RAP and M6P that sortilin and M6PR mediated uptake of α-Gal A. Biacore studies revealed that α-Gal A binds to human M6PR with very high affinity, but M6PR also binds to sortilin in a way that prevents α-Gal A binding to sortilin. Taken together, our data provide evidence that sortilin is a new α-Gal A receptor expressed in renal endothelial cells and that this receptor together with the M6PR is able to internalize circulating α-Gal A during enzyme replacement therapy in patients with Fabry disease
Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue
Background: DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. Results: We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions (p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples (N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Conclusions: Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation
H5N1 Whole-Virus Vaccine Induces Neutralizing Antibodies in Humans Which Are Protective in a Mouse Passive Transfer Model
BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines
- …