83 research outputs found

    Takotsubo cardiomyopathy after a dancing session: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Stress-induced (Takotsubo) cardiomyopathy is a rare form of cardiomyopathy which presents in a manner similar to that of acute coronary syndrome. This sometimes leads to unnecessary thrombolysis therapy. The pathogenesis of this disease is still poorly understood. We believe that reporting all cases of Takotsubo cardiomyopathy will contribute to a better understanding of this disease. Here, we report a patient who, in the absence of any recent stressful events in her life, developed the disease after a session of dancing.</p> <p>Case presentation</p> <p>A 69-year-old Caucasian woman presented with features suggestive of acute coronary syndrome shortly after a session of dancing. Echocardiography and a coronary angiogram showed typical features of Takotsubo cardiomyopathy and our patient was treated accordingly. Eight weeks later, her condition resolved completely and the results of echocardiography were totally normal.</p> <p>Conclusions</p> <p>Takotsubo cardiomyopathy, though transient, is a rare and serious condition. Although it is commonly precipitated by stressful life events, these are not necessarily present. Our patient was enjoying one of her hobbies (that is, dancing) when she developed the disease. This case has particular interest in medicine, especially for the specialties of cardiology and emergency medicine. We hope that it will add more information to the literature about this rare condition.</p

    Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials

    Get PDF
    AIMS/HYPOTHESIS: Delayed-release metformin (Metformin DR) was developed to maximise gut-based mechanisms of metformin action by targeting the drug to the ileum. Metformin DR was evaluated in two studies. Study 1 compared the bioavailability and effects on circulating glucose and gut hormones (glucagon-like peptide-1, peptide YY) of Metformin DR dosed twice-daily to twice-daily immediate-release metformin (Metformin IR). Study 2 compared the bioavailability and glycaemic effects of Metformin DR dosages of 1,000 mg once-daily in the morning, 1,000 mg once-daily in the evening, and 500 mg twice-daily. METHODS: Study 1 was a blinded, randomised, crossover study (three × 5 day treatment periods) of twice-daily 500 mg or 1,000 mg Metformin DR vs twice-daily 1,000 mg Metformin IR in 24 participants with type 2 diabetes conducted at two study sites (Celerion Inc.; Tempe, AZ, and Lincoln, NE, USA). Plasma glucose and gut hormones were assessed over 10.25 h at the start and end of each treatment period; plasma metformin was measured over 11 h at the end of each treatment period. Study 2 was a non-blinded, randomised, crossover study (three × 7 day treatment periods) of 1,000 mg Metformin DR once-daily in the morning, 1,000 mg Metformin DR once-daily in the evening, or 500 mg Metformin DR twice-daily in 26 participants with type 2 diabetes performed at a single study site (Celerion, Tempe, AZ). Plasma glucose was assessed over 24 h at the start and end of each treatment period, and plasma metformin was measured over 30 h at the end of each treatment period. Both studies implemented centrally generated computer-based randomisation using a 1:1:1 allocation ratio. RESULTS: A total of 24 randomised participants were included in study 1; of these, 19 completed the study and were included in the evaluable population. In the evaluable population, all treatments produced similar significant reductions in fasting glucose (median reduction range, −0.67 to −0.81 mmol/l across treatments) and postprandial glucose (Day 5 to baseline AUC(0–t) ratio = 0.9 for all three treatments) and increases in gut hormones (Day 5 to baseline AUC(0–t) ratio range: 1.6–1.9 for GLP-1 and 1.4–1.5 for PYY) despite an almost 60% reduction in systemic metformin exposure for 500 mg Metformin DR compared with Metformin IR. A total of 26 randomised participants were included in study 2: 24 had at least one dose of study medication and at least one post-dose pharmacokinetic/pharmacodynamic assessment and were included in the pharmacokinetic/pharmacodynamic intent-to-treat analysis; and 12 completed all treatment periods and were included in the evaluable population. In the evaluable population, Metformin DR administered once-daily in the morning had 28% (90% CI −16%, −39%) lower bioavailability (least squares mean ratio of metformin AUC(0–24)) compared with either once-daily in the evening or twice-daily, although the glucose-lowering effects were maintained. In both studies, adverse events were primarily gastrointestinal in nature, and indicated similar or improved tolerability for Metformin DR vs Metformin IR; there were no clinically meaningful differences in vital signs, physical examinations or laboratory values. CONCLUSIONS/INTERPRETATION: Dissociation of gut hormone release and glucose lowering from plasma metformin exposure provides strong supportive evidence for a distal small intestine-mediated mechanism of action. Directly targeting the ileum with Metformin DR once-daily in the morning may provide maximal metformin efficacy with lower doses and substantially reduce plasma exposure. Metformin DR may minimise the risk of lactic acidosis in those at increased risk from metformin therapy, such as individuals with renal impairment. TRIAL REGISTRATION: Clinicaltrials.gov NCT01677299, NCT01804842 FUNDING: This study was funded by Elcelyx Therapeutics Inc. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-016-3992-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    Get PDF
    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported(1,2). In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis(3,4). Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa(3,4). These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication

    Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

    Get PDF

    Metformin reduziert in Phase-2-Studie Nebenwirkungen von Kortikosteroiden

    No full text

    Pseudomonas putida

    No full text
    corecore