9 research outputs found

    Author Correction: Enhanced NF-ÎșB signaling in type-2 dendritic cells at baseline predicts non-response to adalimumab in psoriasis.

    Get PDF
    Funder: Department of HealthBiologic therapies have transformed the management of psoriasis, but clinical outcome is variable leaving an unmet clinical need for predictive biomarkers of response. Here we perform in-depth immunomonitoring of blood immune cells of 67 patients with psoriasis, before and during therapy with the anti-TNF drug adalimumab, to identify immune mediators of clinical response and evaluate their predictive value. Enhanced NF-ÎșBp65 phosphorylation, induced by TNF and LPS in type-2 dendritic cells (DC) before therapy, significantly correlates with lack of clinical response after 12 weeks of treatment. The heightened NF-ÎșB activation is linked to increased DC maturation in vitro and frequency of IL-17+ T cells in the blood of non-responders before therapy. Moreover, lesional skin of non-responders contains higher numbers of dermal DC expressing the maturation marker CD83 and producing IL-23, and increased numbers of IL-17+ T cells. Finally, we identify and clinically validate LPS-induced NF-ÎșBp65 phosphorylation before therapy as a predictive biomarker of non-response to adalimumab, with 100% sensitivity and 90.1% specificity in an independent cohort. Our study uncovers important molecular and cellular mediators underpinning adalimumab mechanisms of action in psoriasis and we propose a blood biomarker for predicting clinical outcome

    Defining trajectories of response in patients with psoriasis treated with biologic therapies

    Get PDF
    From Wiley via Jisc Publications RouterHistory: accepted 2021-04-03, pub-electronic 2021-06-04Article version: VoRPublication status: PublishedFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/K006665/1, MR/L011808/1, MR/N00583X/1Summary: Background: The effectiveness and cost‐effectiveness of biologic therapies for psoriasis are significantly compromised by variable treatment responses. Thus, more precise management of psoriasis is needed. Objectives: To identify subgroups of patients with psoriasis treated with biologic therapies, based on changes in their disease activity over time, that may better inform patient management. Methods: We applied latent class mixed modelling to identify trajectory‐based patient subgroups from longitudinal, routine clinical data on disease severity, as measured by the Psoriasis Area and Severity Index (PASI), from 3546 patients in the British Association of Dermatologists Biologics and Immunomodulators Register, as well as in an independent cohort of 2889 patients pooled across four clinical trials. Results: We discovered four discrete classes of global response trajectories, each characterized in terms of time to response, size of effect and relapse. Each class was associated with differing clinical characteristics, e.g. body mass index, baseline PASI and prevalence of different manifestations. The results were verified in a second cohort of clinical trial participants, where similar trajectories following the initiation of biologic therapy were identified. Further, we found differential associations of the genetic marker HLA‐C*06:02 between our registry‐identified trajectories. Conclusions: These subgroups, defined by change in disease over time, may be indicative of distinct endotypes driven by different biological mechanisms and may help inform the management of patients with psoriasis. Future work will aim to further delineate these mechanisms by extensively characterizing the subgroups with additional molecular and pharmacological data

    HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis

    Get PDF
    Background: Biologic therapies can be highly effective for the treatment of severe psoriasis, but response for individual patients can vary according to drug. Predictive biomarkers to guide treatment selection could improve patient outcomes and treatment cost-effectiveness. Objective: We sought to test whether HLA-C*06:02, the primary genetic susceptibility allele for psoriasis, predisposes patients to respond differently to the 2 most commonly prescribed biologics for psoriasis: adalimumab (anti–TNF-α) and ustekinumab (anti–IL-12/23). Methods: This study uses a national psoriasis registry that includes longitudinal treatment and response observations and detailed clinical data. HLA alleles were imputed from genome-wide genotype data for 1326 patients for whom 90% reduction in Psoriasis Area and Severity Index score (PASI90) response status was observed after 3, 6, or 12 months of treatment. We developed regression models of PASI90 response, examining the interaction between HLA-C*06:02 and drug type (adalimumab or ustekinumab) while accounting for potentially confounding clinical variables. Results: HLA-C*06:02–negative patients were significantly more likely to respond to adalimumab than ustekinumab at all time points (most strongly at 6 months: odds ratio [OR], 2.95; P = 5.85 × 10−7), and the difference was greater in HLA-C*06:02–negative patients with psoriatic arthritis (OR, 5.98; P = 6.89 × 10−5). Biologic-naive patients who were HLA-C*06:02 positive and psoriatic arthritis negative demonstrated significantly poorer response to adalimumab at 12 months (OR, 0.31; P = 3.42 × 10−4). Results from HLA-wide analyses were consistent with HLA-C*06:02 itself being the primary effect allele. We found no evidence for genetic interaction between HLA-C*06:02 and ERAP1. Conclusion: This large observational study suggests that reference to HLA-C*06:02 status could offer substantial clinical benefit when selecting treatments for severe psoriasis
    corecore