26,536 research outputs found

    Photonic realization of topologically protected bound states in domain-wall waveguide arrays

    Full text link
    We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.Comment: 6 pages, 5 figures. To appear in the Phys. Rev.

    Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors

    Get PDF
    In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits

    Coulomb Drag at the Onset of Anderson Insulators

    Full text link
    It is shown that the Coulomb drag between two identical layers in the Anderson insulting state indicates a striking difference between the Mott and Efros-Shklovskii (ES) insulators. In the former, the trans-resistance ρt\rho_t is monotonically increasing with the localization length ξ\xi; in the latter, the presence of a Coulomb gap leads to an opposite result: ρt\rho_t is enhanced with a decreasing ξ\xi, with the same exponential factor as the single layer resistivity. This distinction reflects the relatively pronounced role of excited density fluctuations in the ES state, implied by the enhancement in the rate of hopping processes at low frequencies. The magnitude of drag is estimated for typical experimental parameters in the different cases. It is concluded that a measurement of drag can be used to distinguish between interacting and non-interacting insulating state.Comment: 15 pages, revte

    A different view of the quantum Hall plateau-to-plateau transitions

    Full text link
    We demonstrate experimentally that the transitions between adjacent integer quantum Hall (QH) states are equivalent to a QH-to-insulator transition occurring in the top Landau level, in the presence of an inert background of the other completely filled Landau levels, each contributing a single unit of quantum conductance, e2/he^{2}/h, to the total Hall conductance of the system.Comment: 10 pages, 4 figures, Revtex 3.

    Spin-Electromagnetic Hydrodynamics and Magnetization Induced by Spin-Magnetic Interaction

    Full text link
    The hydrodynamic model including the spin degree of freedom and the electromagnetic field was discussed. In this derivation, we applied electromagnetism for macroscopic medium proposed by Minkowski. For the equation of motion of spin, we assumed that the hydrodynamic representation of the Pauli equation is reproduced when the many-body effect is neglected. Then the spin-magnetic interaction in the Pauli equation was converted to a part of the magnetization. The fluid and spin stress tensors induced by the many-body effect were obtained by employing the algebraic positivity of the entropy production in the framework of the linear irreversible thermodynamics, including the mixing effect of the irreversible currents. We further constructed the constitutive equation of the polarization and the magnetization. Our polarization equation is more reasonable compared to another result obtained using electromagnetism for macroscopic medium proposed by de Groot-Mazur.Comment: 24 pages, no figure, the discussion for the modifed thermodynamic relation is added, several errors are corrected, accepted for publication in PR

    Transmission Through Carbon Nanotubes With Polyhedral Caps

    Full text link
    We study electron transport between capped carbon nanotubes and a substrate, and relate the transmission probability to the local density of states in the cap. Our results show that the transmission probability mimics the behavior of the density of states at all energies except those that correspond to localized states in the cap. Close proximity of a substrate causes hybridization of the localized state. As a result, new transmission paths open from the substrate to nanotube continuum states via the localized states in the cap. Interference between various transmission paths gives rise to antiresonances in the transmission probability, with the minimum transmission equal to zero at energies of the localized states. Defects in the nanotube that are placed close to the cap cause resonances in the transmission probability, instead of antiresonances, near the localized energy levels. Depending on the spatial position of defects, these resonant states are capable of carrying a large current. These results are relevant to carbon nanotube based studies of molecular electronics and probe tip applications

    Theory for a Hanbury Brown Twiss experiment with a ballistically expanding cloud of cold atoms

    Full text link
    We have studied one-body and two-body correlation functions in a ballistically expanding, non-interacting atomic cloud in the presence of gravity. We find that the correlation functions are equivalent to those at thermal equilibrium in the trap with an appropriate rescaling of the coordinates. We derive simple expressions for the correlation lengths and give some physical interpretations. Finally a simple model to take into account finite detector resolution is discussed

    Disentangling the Imaginary-Time Formalism at Finite Temperature

    Get PDF
    We rewrite the imaginary-time formalism of finite temperature field theory in a form that all graphs used in calculating physical processes do not have any loops. Any production of a particle from a heat bath which is itself not thermalized or the decay and absorption of a similar particle in the bath is expressed entirely in terms of the sum of particle interaction processes. These are themselves very general in meaning. They can be straight forward interactions or the more subtle and less well-known purely interference processes that do not have a counter part in the vacuum.Comment: 14 pages revtex style, 20 embedded EPS figures, added discussion of the connection with the real-time formalism + reference

    Exact Conductance through Point Contacts in the ν=1/3\nu =1/3 Fractional Quantum Hall Effect

    Full text link
    The conductance for tunneling through a point contact between two ν=1/3\nu =1/3 quantum Hall edges is described by a universal scaling function, which has recently been measured experimentally. We compute this universal function exactly, by using the thermodynamic Bethe ansatz and a Boltzmann equation.Comment: 10 pages, 1 figur
    corecore