162 research outputs found

    Ceramics with photonic and optical applications

    Get PDF
    There is a fast growing interest in new applications for advanced ceramic systems in the field of functional materials and in particular for optical materials. Ceramics are entitled to fulfil the gap between glasses and single crystals in the area of photonic materials. The processing versatility and unpaired resistance to high temperature corrosive environments of some ceramics make them good candidates for such applications. However, the critical dependence of the material optical properties on microstructure makes the deep understanding of the processing conditions even more necessary than before for the fabrication of well ordered, transparent, efficient optical ceramics. This review is directed towards ceramists interested in new applications. In the paper we address some fundamental aspects of the relationship between processing, microstructure and optical properties that are illustrated with some examples related with transparent ceramics, glass ceramics, luminescence, random lasers, thermo-emissive applications, scintillators and dielectric metamaterials

    Compositionally graded YSZ–NiO composites by surface laser melting

    Get PDF
    El pdf del artículo es la versión post-print.Laser surface melting has been applied to near eutectic NiO–YSZ sintered ceramics. The objective is to generate a functional gradient composite material with graded microstructure and composition. At low solidification rates the resultant material has a graded composition, with a severe NiO segregation towards the surface. A thick NiO layer whose thickness depends on the travelling speed is formed. Below this layer the microstructure is eutectic like with composition varying with depth. In contact with the ceramic, excess YSZ coming from the hypereutectic composition forms an almost continuous YSZ layer. The thickness of both segregated layers, NiO and YSZ can be controlled by traverse speed. Thickness decreases as travelling speed increases until a limiting travelling rate of 110 mm/h, at which no more segregation is found. Possible causes to explain the relevant NiO segregation towards the surface are discussed.Financial support from the Ministerio de Educación y Ciencia of Spain and the CE program FEDER under grant MAT2006-13005-C03-01 is gratefully acknowledged.Peer Reviewe

    Probing high oxygen activity in YSZ electrolyte

    Get PDF
    The redox behavior of terbium and praseodymium doped yttria-stabilized zirconia (YSZ) is studied. The aim is to identify spectroscopic probes and a suitable experimental procedure to monitor the oxygen activity in YSZ electrolytes in solid oxide cells with spatial resolution and at operation conditions (e.g. at high temperatures). Sintered ceramics and crystals with 0.3 to 10 at% content of Pr or Tb ions in YSZ were prepared. Upon equilibration in atmospheres from 10-20to 100 bar PO2around 800 °C, the majority of these rare earth ions are in the 3 + oxidation state. At oxygen pressures above 0.001 bar, the small proportion of Tb4+and Pr4+formed give rise to intense optical absorption around 300 500 nm and to decreased reflectance. From the reflectance measurements it is shown that the Tb4+concentration increases as PO21/4, as correspond to the trapping of the holes generated upon the oxygen incorporation as Tb4+. This competitive absorption causes a decrease of the Tb3+luminescence. A quantitative relationship of the Tb3+luminescence intensity with PO2at 800 °C has been found, which is compatible with the trapping model. The spatial resolution of the experimental procedure could be very roughly estimated of the order of 100 µm

    Component release after exposure of Staphylococcus aureus cells to pulsed electric fields

    Get PDF
    The objective of this work was to get further insights on the mechanism of inactivation of bacterial cells by pulsed electric fields (PEF) through the study of the release of intracellular components after exposing Staphylococcus aureus cells in McIvlaine buffer (pH 7.0, 2 mS/cm) to PEF treatments of different intensity (18 and 25 kV/cm) and treatment times (from 20 to 400 mu s). Release of most compounds, except proteins, was almost immediate after the treatment, but the relative amount released depended on the molecule studied. A good correlation between the release of the smallest components studied (particularly ions) and membrane permeabilization (as measured by NaCl sensitization and PI entry) was observed. On the other hand, results obtained suggested that S. aureus inactivation by PEF would be related to the exit of cytoplasmic proteins of a molecular weight higher than 6 kDa. Results obtained in this work indicated that increasing PEF treatment time would reduce the capability of S. aureus cells to repair the electropores formed and suggested that this might be due to the formation of pores of a larger size, which S. aureus cells would be unable to reseal in a situation of homeostasis loss. Industrial relevance: Results reported here can help to design more effective treatments for microbial inactivation using PEF on food, and therefore facilitate its industrial implementation

    Procedimiento de preparación y materiales conformados basados en compuestos eutécticos binarios o ternarios de circonia

    Get PDF
    Referencia OEPM: P9600891.-- Fecha de solicitud: 19/04/1996.-- Titular: Consejo Superior de Investigaciones Científicas (CSIC).Procedimiento de preparación y materiales conformados basados en compuestos eutécticos binarios o ternarios de circonia. La presente invención está relacionada con la preparación de materiales con estructuras eutécticas micrométricas basados en mezclas de óxidos, conformados con dimensiones mili y submilimétricas mediante fusión zonal por láser con diferentes sistemas ópticos de focalización y control de los haces de los láseres. Su utilización es en el sector de la producción y conservación de energía, como elementos calefactores, refractarios, cátodos para plasmas de aire, electrodos, en componentes para celdas de combustión, microsensores de gas oxígeno, etc.Peer reviewe

    Calidad e innovación educativa en Información y Documentación en la Universidad de Zaragoza

    Get PDF
    Teachers of Library and Information Science at the University of Zaragoza, since 2002, develops various teaching innovation projects to improve the quality of learning experiences. The aim of this work is to compile and systematize the various initiatives developed and its main results, analyzing the improvements, outstanding tasks and prospects of future development, to make strategic decisions about the process of evaluating the degree

    Laser-assisted surface melting of Al2O3-YSZ eutectic ceramics

    Get PDF
    [ES] Se presenta un procedimiento para la densificación y/o texturado superficial de cerámicas de Al2O3-YSZ (circona estabilizada con itria) con composición eutéctica mediante fusión zonal asistida por láser. Haciendo un barrido con la radiación proveniente de un láser de potencia sobre piezas cerámicas conseguimos modificar la microestructura y densificar completatmente la capa superficial, con un espesor que va de 30 a 1000 μm. Por ejemplo, con línea estrecha de láser de diodo, fluencia de 1.23 kW/cm2 y velocidades de barrido de 0.14 mm/s, solidificamos capas de 560 μm. El resultado es una superficie de baja rugosidad y no porosa. La microestructura de la muestra es fina debido a su composición eutéctica. La interfase sólido-líquido en el proceso de crecimiento determina la orientación de la microestructura. Se estudia la forma de esta interfase tanto en cortes transversales como longitudinales, lo que permite analizar el efecto que sobre la microestructura tiene la superposición de barridos, que es una alternativa para tratar superficies extensas. Macroscópicamente la frontera entre barridos contiguos es suave. Sin embargo, su microestructura presenta discontinuidad en el espaciado entre las fases debido a la evolución microestructural en la región no fundida sometida a altas temperaturas y a la nucleación preferencial de Al2O3 al comenzar el crecimiento cristalino. Se analizan distintas posibilidades para disminuir el choque térmico inherente al proceso y que conduce a la formación de grietas paralelas a la dirección de procesado y de delaminación. Se observa una mejora importante cuando se precalienta la pieza a tratar, de modo que es posible procesar superficies de cerámicas eutécticas 99% densas.[EN] A procedure for surface densification and/or texturing of Al2O3-YSZ (yttria stabilised zirconia) ceramics with eutectic composition by means of laser surface melting is presented. By scanning a high-power laser beam on a ceramic surface, we achieve a textured and fully dense surface layer from 30 to 1000 microns thick. For example, using a thin diode laser line with fluence 1.23 kW/cm2 and 0.14 mm/s scan rate, the solidified layer has 560 μm depth. We get a low roughness and dense surface. The microstructure is fine (micron size) due to the eutectic composition. The orientation of the microstructure is determined by the shape of the solid-liquid interface in the solidification process. We study the shape of this interface in transverse and longitudinal cross-sections in single as well as overlapping scans, which are required to process large surfaces. From the macroscopic point of view, the transition between adjacent scans is smooth. However, the microstructure presents discontinuity in the interphase spacing due to microstructural evolution in the heat affected region as well as the nucleation of an Al2O3 layer at the beginning of the crystal growth. The thermal shock inherent to the procedure generates cracks longitudinal and transverse to the scanning direction, as well as delaminating cracks. We analyse different possibilities to reduce this thermal shock. The best results are obtained by preheating the substrate, allowing us to process surfaces of Al2O3-YSZ eutectic ceramics 99% dense.Financiación del Ministerio de Ciencia y Tecnología a través de los proyectos MAT2000-1495 y MAT2000-1533-C03-02.Peer reviewe

    Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters

    Get PDF
    Al2O3-Yb3Al5O12 eutectic rods were directionally solidified using the laser floating zone method at rates between 25 and 750 mm/h. The microstructure consisted of an interpenetrated network of both eutectic phases for all the growth rates. The size of the phases was strongly dependent on the growth rate, the eutectic interspacing decreasing from 4.5 µm at the lowest growth rate to 600 nm at 750 mm/h. The optical transmission of the sample with coarser microstructure was measured and compared with that of an Yb3Al5O12 single crystal grown "ad hoc" using the same method. The apparent "oscillator strength" of the single 2F7/2¿2F5/2 Yb3+ absorption band was larger in the eutectic sample than in the single crystal, which was attributed to the increase in the light path caused by multiple refractions at the eutectic interphases. The thermal emission of the eutectic rod was studied between 1000 °C and 1500 °C. An intense and relatively narrow emission band at about 1 µm corresponding to the 2F5/2¿2F7/2 Yb3+ electronic transition was observed in the whole temperature range. The intensity of the band increased with the temperature up to about 1300 °C. At higher temperatures a saturation of the selective emission was observed which was attributed to the competition between the increase in the thermal population of the excited state and the enhancement of the non-radiative de-excitation channels with the temperature

    Fabrication and microstructure of self-supporting thin ceramic electrolytes prepared by laser machining

    Get PDF
    Self-supporting thin Yttria Stabilized Zirconia (YSZ) ceramics electrolytes have been prepared by laser machining. They are carved from a sintered YSZ plate to shape a 20 µm thick and 8 mm in diameter central region, surrounded by an unprocessed 150 µm thick supporting zone. Scanning Electron Microscopy (SEM) and Electron BackScattering Diffraction (EBSD) studies confirmed that the strains produced by the laser processing are small and limited to only one or two layers of YSZ grains (~5 µm). SEM and Transmission Electron Microscopy (TEM) have been also used to characterize the surface of the membrane. It is corrugated and coated with YSZ nanoparticles as a result of the laser plasma deposition. Electrochemical characterization by Impedance Spectroscopy (EIS) showed that this surface morphology improves the electrical performance of the membrane slightly but clearly, reducing the cathode polarization resistance by about 5% in the 650-850 ºC range.This study was funded by the MAT2012-30763 project, which is financed by the Spanish Government (Ministerio de Economía y Competitividad) and the Feder program of the European Union.Peer Reviewe

    Calidad e innovación educativa en Información y Documentación en la Universidad de Zaragoza

    Get PDF
    Teachers of Library and Information Science at the University of Zaragoza, since 2002, develops various teaching innovation projects to improve the quality of learning experiences. The aim of this work is to compile and systematize the various initiatives developed and its main results, analyzing the improvements, outstanding tasks and prospects of future development, to make strategic decisions about the process of evaluating the degree
    • …
    corecore