1,317 research outputs found

    Long-term culture captures injury-repair cycles of colonic stem cells

    Get PDF
    The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop

    Systematic analysis of interannual and seasonal variations of model-simulated tropospheric NO<sub>2</sub> in Asia and comparison with GOME-satellite data

    No full text
    International audienceSystematic analyses of interannual and seasonal variations of tropospheric NO2 vertical column densities (VCDs) based on GOME satellite data and the regional scale chemical transport model (CTM), Community Multi-scale Air Quality (CMAQ), are presented over eastern Asia between 1996 and June 2003. A newly developed year-by-year emission inventory (REAS) was used in CMAQ. The horizontal distribution of annual averaged GOME NO2 VCDs generally agrees well with the CMAQ results. However, CMAQ/REAS results underestimate the GOME retrievals with factors of 2?4 over polluted industrial regions such as Central East China (CEC), a major part of Korea, Hong Kong, and central and western Japan. For the Japan region, GOME and CMAQ NO2 data show good agreement with respect to interannual variation and show no clear increasing trend. For CEC, GOME and CMAQ NO2 data show good agreement and indicate a very rapid increasing trend from 2000. Analyses of the seasonal cycle of NO2 VCDs show that GOME data have systematically larger dips than CMAQ NO2 during February?April and September?November. Sensitivity experiments with fixed emission intensity reveal that the detection of emission trends from satellite in fall or winter have a larger error caused by the variability of meteorology. Examination during summer time and annual averaged NO2 VCDs are robust with respect to variability of meteorology and are therefore more suitable for analyses of emission trends. Analysis of recent trends of annual emissions in China shows that the increasing trends of 1996?1998 and 2000?2002 for GOME and CMAQ/REAS show good agreement, but the rate of increase by GOME is approximately 10?11% yr?1 after 2000; it is slightly steeper than CMAQ/REAS (8?9% yr?1). The greatest difference was apparent between the years 1998 and 2000: CMAQ/REAS only shows a few percentage points of increase, whereas GOME gives a greater than 8% yr?1 increase. The exact reason remains unclear, but the most likely explanation is that the emission trend based on the Chinese emission related statistics underestimates the rapid growth of emissions

    Arrival direction of successive air showers

    Get PDF
    We have studied the features of series of air shower events (AS cluster) concentrated within short intervals of time of arrival. When the number of events in the cluster reaches the maximum values in the considered data set, the arrival directions of the AS are prevailingly observed around values of right ascension α 5 h and α 20 h. These values indicate parallellism of directions between the shower directions and the galactic plane. This can be explained by the presence of Ultra-High Energy (UHE) gamma-ray sources, generating showers from their specific direction. The analysis uses three data set of 253k, 664k and 231k events. The results are similar in the three data set

    Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Get PDF
    Anthropogenic SO&lt;sub&gt;2&lt;/sub&gt; emissions increased alongside economic development in China at a rate of 12.7% yr&lt;sup&gt;−1&lt;/sup&gt; from 2000 to 2005. However, under new Chinese government policy, SO&lt;sub&gt;2&lt;/sub&gt; emissions declined by 3.9% yr&lt;sup&gt;−1&lt;/sup&gt; between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron) aerosol optical depth (AOD) over the oceans adjacent to East Asia increased by 3–8% yr&lt;sup&gt;−1&lt;/sup&gt; to a peak around 2005–2006 and subsequently decreased by 2–7% yr&lt;sup&gt;−1&lt;/sup&gt;, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO&lt;sub&gt;2&lt;/sub&gt; emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD) devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO&lt;sub&gt;2&lt;/sub&gt; emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO&lt;sub&gt;2&lt;/sub&gt; vertical column density and bottom-up SO&lt;sub&gt;2&lt;/sub&gt; emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO&lt;sub&gt;2&lt;/sub&gt; emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO&lt;sub&gt;2&lt;/sub&gt; emissions and satellite retrieval. Satellite measurements of fine-mode AOD above the Sea of Japan marked a 4.1% yr&lt;sup&gt;−1&lt;/sup&gt; decline between 2007 and 2010, which corresponded to the 9% yr&lt;sup&gt;−1&lt;/sup&gt; decline in SO&lt;sub&gt;2&lt;/sub&gt; emissions from China during the same period

    Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

    Get PDF
    Proocedings of: Fourth Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials. Kurashiki, Japan, 02-05 September 2012.The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.The financial support for this work is provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia Project No. 172035 and JSPS fellowship, 2011/2012 (O.M.).Publicad

    Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems

    Get PDF
    SummaryObjectiveIn a rat monoiodoacetic acid (MIA)-induced arthritis model, the amount of MIA commonly used was too high, resulting in rapid bone destruction. We examined the effect of MIA concentrations on articular cartilage and infrapatellar fat pad (IFP). We also established an original system for “macroscopic cartilage and bone score” and “IFP inflammation score” specific to the rat MIA-induced arthritis model.DesignMale Wistar rats received a single intra-articular injection of MIA in the knee. The amount of MIA was 0.1, 0.2, 0.5, and 1 mg respectively. Articular cartilage was evaluated at 2–12 weeks. IFP was also observed at 3–14 days.ResultsMacroscopically, low MIA doses induced punctate depressions on the cartilage surface, and cartilage erosion proceeded slowly over 12 weeks, while higher MIA doses already induced cartilage erosion at 2 weeks, followed by bone destruction. MIA macroscopic cartilage and bone score, OARSI histological score, and Mankin score increased in a dose- and time-dependent manner. The IFP inflammation score peaked at 5 days in low dose groups, then decreased, while in high dose groups, the IFP score continued to increase over 14 days due to IFP fibrosis.ConclusionsPunctate depressions, cartilage erosion, and bone destruction were observed in the MIA-induced arthritis model. The macroscopic cartilage and bone scoring enabled the quantification of cartilage degeneration and demonstrated that MIA-induced arthritis progressed in a dose- and time-dependent manner. IFP inflammation scores revealed that 0.2 mg MIA induced reversible synovitis, while 1 mg MIA induced fibrosis of the IFP body

    Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006)

    Get PDF
    The impact of open crop residual burning (OCRB) on O&lt;sub&gt;3&lt;/sub&gt;, CO, black carbon (BC) and organic carbon (OC) concentrations over Central Eastern China (CEC; 30–40° N, 111–120° E), during the Mount Tai Experiment in 2006 (MTX2006) was evaluated using a regional chemical transport model, the Models–3 Community Multiscale Air Quality Modeling System (CMAQ). To investigate these pollutants during MTX2006 in June 2006, daily gridded OCRB emissions were developed based on a bottom-up methodology using land cover and hotspot information from satellites. This model system involving daily emissions captured monthly–averages of observed concentrations and day-to-day variations in the patterns of O&lt;sub&gt;3&lt;/sub&gt;, CO, BC and OC at the summit of Mount Tai (36° N, 117° E, 1534 m a.s.l., Shandong Province of the People's Republic of China) with high correlation coefficients between the model and observations ranging from 0.55 to 0.69. These results were significantly improved from those using annual biomass burning emissions. For monthly-averaged O&lt;sub&gt;3&lt;/sub&gt;, the simulated concentration of 80.8 ppbv was close to the observed concentration (81.3 ppbv). The MTX2006 period was roughly divided into two parts: 1) polluted days with heavy OCRB in the first half of June; and 2) cleaner days with negligible field burning in the latter half of June. Additionally, the first half of June was characterized by two high-pollution episodes during 5–7 and 12–13 June, separated by a relatively cleaner intermediate period during 8–10 June. In the first high-pollution episode, the model captured the high O&lt;sub&gt;3&lt;/sub&gt;, CO, BC and OC concentrations at the summit of Mount Tai, which were associated with OCRB over southern CEC and subsequent northward transport. For this episode, the impacts of OCRB emissions on pollutant concentrations were 26% (O&lt;sub&gt;3&lt;/sub&gt;), 62% (CO), 79% (BC) and 80% (OC) at the summit of Mount Tai. The daily OCRB emissions were an essential factor in the evaluation of these pollutants during MTX2006. These emissions have a large impact not only on primary pollutants but also on secondary pollutants, such as O&lt;sub&gt;3&lt;/sub&gt;, in the first half of June over northeastern Asia. The model reproduced reasonably well the variation of these pollutants in MTX2006, but underestimated daily averages of both CO and BC by a factor of 2, when using emission data from almost solely anthropogenic fuel sources in the latter half of the observation period when field burning can be neglected

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure
    corecore