347 research outputs found

    Effects of Gestational Intermittent Hypoxia on Placental Morphology and Fetal Development in a Murine Model of Sleep Apnea

    Get PDF
    Obstructive sleep apnea (OSA) during pregnancy is characterized by episodes of intermittent hypoxia (IH) during sleep, resulting in adverse health outcomes for mother and offspring. Despite a prevalence of 8-20% in pregnant women, this disorder is often underdiagnosed.We have developed a murine model of gestational OSA to study IH effects on pregnant mothers, placentas, fetuses, and offspring. One group of pregnant rats was exposed to IH during the last 2 weeks of gestation (GIH). One day before the delivery date, a cesarean section was performed. Other group of pregnant rats was allowed to give birth at term to study offspring's evolution.Preliminary results showed no significant weight differences in mothers and fetuses. However, the weight of GIH male offspring was significantly lower than the controls at 14 days (p < 0.01). The morphological study of the placentas showed an increase in fetal capillary branching, expansion of maternal blood spaces, and number of cells of the external trophectoderm in the tissues from GIH-exposed mothers. Additionally, the placentas from the experimental males were enlarged (p < 0.05). Further studies are needed to follow the long-term evolution of these changes to relate the histological findings of the placentas with functional development of the offspring in adulthood.Ayudas para la realización de proyectos de investigación UVa 2021 (PROYEMER 57-E.O.

    Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease

    Get PDF
    The pathophysiology of levodopa-induced dyskinesias (LID) in Parkinson’s disease is not well understood. We have recorded local field potentials (LFP) from macroelectrodes implanted in the subthalamic nucleus (STN) of 14 patients with Parkinson’s disease following surgical treatment with deep brain stimulation. Patients were studied in the ‘Off’ medication state and in the ‘On’ motor state after administration of levodopa– carbidopa (po) or apomorphine (sc) that elicited dyskinesias in 11 patients. The logarithm of the power spectrum of the LFP in selected frequency bands (4–10, 11–30 and 60–80 Hz) was compared between the ‘Off’ and ‘On’ medication states. A peak in the 11–30 Hz band was recorded in the ‘Off’ medication state and reduced by 45.2% (P < 0.001) in the ‘On’ state. The ‘On’ was also associated with an increment of 77. 6% (P < 0.001) in the 4–10 Hz band in all patients who showed dyskinesias and of 17.8% (P < 0.001) in the 60–80 Hz band in the majority of patients. When dyskinesias were only present in one limb (n = 2), the 4–10 Hz peak was only recorded in the contralateralSTN. These findings suggest that the 4–10 Hz oscillation is associated with the expression of LID in Parkinson’s disease

    Parkinsonism caused by adverse drug reactions: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Parkinsonism puts a high direct cost burden on both patient and caregiver. Several reports of drug-induced parkinsonism have been published, but to the best of our knowledge, there has not been any report of quinine or halothane inducing parkinsonism.</p> <p>Case presentation</p> <p>We describe two cases of parkinsonism possibly caused by adverse drug reaction to quinine in a 29-year-old black Nigerian woman and to halothane in a 36-year-old black Hausa (Nigerian) man who received it as general anaesthesia for appendicectomy in our teaching hospital.</p> <p>Conclusion</p> <p>These are two unusual cases of parkinsonism caused by adverse drug reactions to high-dose quinine and to halothane as general anaesthesia. We consider that these two cases are important in bringing this potential side-effect to the attention of both pharmacologists and primary care physicians as these are two of the most commonly used medications in our clinics. We conclude that parkinsonism should be included among the adverse drug reactions to high-dose quinine and halothane general anaesthetic.</p

    New MRI, 18F-DOPA and 11C-(+)-alpha-dihydrotetrabenazine templates for Macaca fascicularis neuroimaging: advantages to improve PET quantification

    Get PDF
    Normalization of neuroimaging studies to a stereotaxic space allows the utilization of standard volumes of interest (VOIs) and voxel-based analysis (SPM). Such spatial normalization of PET and MRI studies requires a high quality template image. The aim of this study was to create new MRI and PET templates of 18F-DOPA and 11C-(+)-α-dihydrotetrabenazine (11C-DTBZ) of the Macaca fascicularis brain, an important animal model of Parkinson's disease. MRI template was constructed as a smoothed average of the scans of 15 healthy animals, previously transformed into the space of one representative MRI. In order to create the PET templates, 18F-DOPA and 11C-DTBZ PET of the same subjects were acquired in a dedicated small animal PET scanner and transformed to the created MRI template space. To validate these templates for PET quantification, parametric values obtained with a standard VOI-map applied after spatial normalization to each template were statistically compared to results computed using individual VOIs drawn for each animal. The high correlation between both procedures validated the utilization of all the templates, improving the reproducibility of PET analysis. To prove the utility of the templates for voxel-based quantification, dopamine striatal depletion in a representative monkey treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was assessed by SPM analysis of 11C-DTBZ PET. A symmetric reduction in striatal 11C-DTBZ uptake was detected in accordance with the induced lesion. In conclusion, templates of M. fascicularis brain have been constructed and validated for reproducible and automated PET quantification. All templates are electronically available via the internet

    Elevated Pontine and Putamenal GABA Levels in Mild-Moderate Parkinson Disease Detected by 7 Tesla Proton MRS

    Get PDF
    Background: Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding: To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn &amp; Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. c-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p,0.001 for pons and p,0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance: The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of th

    II Congrés Internacional sobre Traducció : abril 1994 : actes

    Get PDF
    Machine learning-based approach unravels distinct pathological signatures induced by patient-derived α-synuclein seeds in monkeys. Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)-rich protein aggregates [termed "Lewy bodies" (LBs)], is a well-established characteristic of Parkinson's disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning-based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneratio
    corecore