289 research outputs found
Single nanowire solar cells beyond the Shockley-Queisser limit
Light management is of great importance to photovoltaic cells, as it
determines the fraction of incident light entering the device. An optimal
pn-junction combined with an optimal light absorption can lead to a solar cell
efficiency above the Shockley-Queisser limit. Here, we show how this is
possible by studying photocurrent generation for a single core-shell p-i-n
junction GaAs nanowire solar cell grown on a silicon substrate. At one sun
illumination a short circuit current of 180 mA/cm^2 is obtained, which is more
than one order of magnitude higher than what would be predicted from
Lambert-Beer law. The enhanced light absorption is shown to be due to a light
concentrating property of the standing nanowire as shown by photocurrent maps
of the device. The results imply new limits for the maximum efficiency
obtainable with III-V based nanowire solar cells under one sun illumination.Comment: 19 pages, 3 figure
Transport and Strong-Correlation Phenomena in Carbon Nanotube Quantum Dots in a Magnetic Field
Transport through carbon nanotube (CNT) quantum dots (QDs) in a magnetic
field is discussed. The evolution of the system from the ultraviolet to the
infrared is analyzed; the strongly correlated (SC) states arising in the
infrared are investigated. Experimental consequences of the physics are
presented -- the SC states arising at various fillings are shown to be
drastically different, with distinct signatures in the conductance and, in
particular, the noise. Besides CNT QDs, our results are also relevant to double
QD systems.Comment: 5 pages, 5 figure
Field-tunable magnetic phases in a semiconductor-based two-dimensional Kondo lattice
We show the existence of intrinsic localized spins in mesoscopic
high-mobility GaAs/AlGaAs heterostructures. Non-equilibrium transport
spectroscopy reveals a quasi-regular distribution of the spins, and indicates
that the spins interact indirectly via the conduction electrons. The
interaction between spins manifests in characteristic zero-bias anomaly near
the Fermi energy, and indicates gate voltage-controllable magnetic phases in
high-mobility heterostructures. To address this issue further, we have also
designed electrostatically tunable Hall devices, that allow a probing of Hall
characteristics at the active region of the mesoscopic devices. We show that
the zero field Hall coefficient has an anomalous contribution, which can be
attributed to scattering by the localized spins. The anomalous contribution can
be destroyed by an increase in temperature, source drain bias, or field range.Comment: To be published in PhysicaE EP2DS proceedin
The CLEO-III Ring Imaging Cherenkov Detector
The CLEO-III Detector upgrade for charged particle identification is
discussed. The RICH design uses solid LiF crystal radiators coupled with
multi-wire chamber photon detectors, using TEA as the photosensor, and
low-noise Viking readout electronics. Results from our beam test at Fermilab
are presented.Comment: Invited talk by R.J. Mountain at ``The 3rd International Workshop on
Ring Imaging Cherenkov Detectors," a research workshop of the Israel Science
Foundation, Ein-Gedi, Dead-Sea, Israel, Nov. 15-20, 1998, 14 pages, 9 figure
On the perturbative expansion of the magnetization in the out-of-equilibrium Kondo model
This paper is concerned with the out-of-equilibrium two-lead Kondo model,
considered as a model of a quantum dot in the Kondo regime. We revisit the
perturbative expansion of the dot's magnetization, and conclude that, even at
order 0 in the Kondo interactions, the magnetization is not given by the usual
equilibrium result. We use the Schwinger-Keldysh method to derive a Dyson
equation describing the steady state induced by the voltage between the two
leads, and thus present the correct procedure for calculating perturbative
expansions of steady-state properties of the system.Comment: Minor corrections forgotten in v
Engineering light absorption in single-nanowire solar cells with metal nanoparticles
Semiconductor nanowires (NWs) possess a fascinating ability to efficiently collect and trap light into a sub-wavelength volume due to the occurrence of leaky mode resonances. The same confinement ability is manifested by metal nanostructures thanks to the excitation of surface plasmons. Combining the two systems, we show how light absorption in individual NWs can be spectrally tailored and enhanced by decorating them with metal nanoparticles. This is demonstrated by means of scanning photocurrent measurements on individual NWs and interpreted by full-field simulations
Quantized Adiabatic Charge Transport in a Carbon Nanotube
The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW)
is proposed as a vehicle to realize quantized adiabatic charge transport in a
Luttinger liquid system. We demonstrate that electron backscattering by a
periodic SAW potential, which results in miniband formation, can be achieved at
energies near the Fermi level. Electron interaction, treated in a Luttinger
liquid framework, is shown to enhance minigaps and thereby improve current
quantization. Quantized SAW induced current, as a function of electron density,
changes sign at half-filling.Comment: 5 pages, 2 figure
The Cleo Rich Detector
We describe the design, construction and performance of a Ring Imaging
Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO
experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones
with a novel ``sawtooth''-shaped exit surface. Photons in the wavelength
interval 135--165 nm are detected using multi-wire chambers filled with a
mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation
is demonstrated.Comment: 75 pages, 57 figures, (updated July 26, 2005 to reflect reviewers
comments), to be published in NIM
Kondo screening cloud effects in mesoscopic devices
We study how finite size effects may appear when a quantum dot in the Kondo
Coulomb blockade regime is embedded into a mesoscopic device with finite wires.
These finite size effects appear when the size of the mesoscopic device
containing the quantum dot is of the order of the size of Kondo cloud and
affect all thermodynamic and transport properties of the Kondo quantum dot. We
also generalize our results to the experimentally relevant case where the wires
contain several transverse modes/channels. Our results are based on
perturbation theory, Fermi liquid theory and slave boson mean field theory.Comment: 19 pages, 9 figure
- …