19,057 research outputs found

    On the Low and High Frequency Correlation in Quasi-Periodic Oscillations Among White Dwarfs, Neutron Star and Black Hole Binaries

    Get PDF
    We interpret the correlation over five orders of magnitude between high frequency and low frequency in a quasi-periodic oscillations (QPO) found by Psaltis, Belloni & van der Klis (1999) for black hole (BH), neutron star (NS) systems and then extended by Mauche (2002) to white dwarf (WD) binaries. We argue that the observed correlation is a natural consequence of the Keplerian disk flow adjustment to the innermost sub-Keplerian boundary conditions near the central object. In the framework of the transition layer model the high frequency is related to the Keplerian frequency at the outer (adjustment) radius and the low frequency is related to the magnetoacoustic oscillation (MA) frequency. Using a relation between the MA frequency the magnetic and gas pressure and the density and the hydrostatic equilibrium condition in the disk we infer a linear correlation the Keplerian frequency and the MA frequency. We estimate the magnetic field strength near the TL outer radius for BHs NSs and WDs. The fact that the observed high-low frequency correlation over five orders of magnitude is valid for BHs, NSs, and down to WDs strongly rules out relativistic models for QPO phenomena. We come to the conclusion that the QPOs observations indicate the adjustment of the geometrically thin disk to sub-Keplerian motion near the central object. This effect is a common feature for a wide class of systems, starting from white dwarf binaries up to black hole binaries.Comment: 8 pages, 1 figure, accepted for publication in the ApJ. Letters 2002 August

    Spectropolarimetry of the H-alpha line in Herbig Ae/Be stars

    Full text link
    Using the HiVIS spectropolarimeter built for the Haleakala 3.7m AEOS telescope, we have obtained a large number of high precision spectropolarimetrc observations (284) of Herbig AeBe stars collected over 53 nights totaling more than 300 hours of observing. Our sample of five HAeBe stars: AB Aurigae, MWC480, MWC120, MWC158 and HD58647, all show systematic variations in the linear polarization amplitude and direction as a function of time and wavelength near the H-alpha line. In all our stars, the H-alpha line profiles show evidence of an intervening disk or outflowing wind, evidenced by strong emission with an absorptive component. The linear polarization varies by 0.2% to 1.5% with the change typically centered in the absorptive part of the line profile. These observations are inconsistent with a simple disk-scattering model or a depolarization model which produce polarization changes centered on the emmissive core. We speculate that polarized absorption via optical pumping of the intervening gas may be the cause.Comment: Accepted for publication in ApJ Letter

    Weekend hospitalization and additional risk of death: An analysis of inpatient data

    Get PDF
    Objective To assess whether weekend admissions to hospital and/or already being an inpatient on weekend days were associated with any additional mortality risk.Design Retrospective observational survivorship study. We analysed all admissions to the English National Health Service (NHS) during the financial year 2009/10, following up all patients for 30 days after admission and accounting for risk of death associated with diagnosis, co-morbidities, admission history, age, sex, ethnicity, deprivation, seasonality, day of admission and hospital trust, including day of death as a time dependent covariate. The principal analysis was based on time to in-hospital death.Participants National Health Service Hospitals in England.Main Outcome Measures 30 day mortality (in or out of hospital).Results There were 14,217,640 admissions included in the principal analysis, with 187,337 in-hospital deaths reported within 30 days of admission. Admission on weekend days was associated with a considerable increase in risk of subsequent death compared with admission on weekdays, hazard ratio for Sunday versus Wednesday 1.16 (95% CI 1.14 to 1.18; P < .0001), and for Saturday versus Wednesday 1.11 (95% CI 1.09 to 1.13; P < .0001). Hospital stays on weekend days were associated with a lower risk of death than midweek days, hazard ratio for being in hospital on Sunday versus Wednesday 0.92 (95% CI 0.91 to 0.94; P < .0001), and for Saturday versus Wednesday 0.95 (95% CI 0.93 to 0.96; P < .0001). Similar findings were observed on a smaller US data set.Conclusions Admission at the weekend is associated with increased risk of subsequent death within 30 days of admission. The likelihood of death actually occurring is less on a weekend day than on a mid-week day

    Using the UM dynamical cores to reproduce idealised 3D flows

    Full text link
    We demonstrate that both the current (New Dynamics), and next generation (ENDGame) dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held-Suarez test, a simplified model of Earth (including a stratosphere), and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics.Comment: 34 Pages, 23 Figures. Accepted for publication in Geoscientific Model Development (pre-proof version

    2-D Radiative Transfer in Protostellar Envelopes: II. An Evolutionary Sequence

    Full text link
    We present model spectral energy distributions, colors, polarization, and images for an evolutionary sequence of a low-mass protostar from the early collapse stage (Class 0) to the remnant disk stage (Class III). We find a substantial overlap in colors and SEDs between protostars embedded in envelopes (Class 0-I) and T Tauri disks (Class II), especially at mid-IR wavelengths. Edge-on Class I-II sources show double-peaked spectral energy distributions, with a short-wavelength hump due to scattered light and the long-wavelength hump due to thermal emission. These are the bluest sources in mid-IR color-color diagrams. Since Class 0 and I sources are diffuse, the size of the aperture over which fluxes are integrated has a substantial effect on the computed colors, with larger aperture results showing significantly bluer colors. This causes overlap in color-color diagrams between all evolutionary states, especially in the mid-IR. However the near-IR polarization of the Class 0 sources is much higher than the Class I-II sources, providing a means to separate these evolutionary states. We varied the grain properties in the circumstellar envelope, allowing for larger grains in the disk midplane and smaller in the envelope. We find that grain growth in disks of Class I sources can be detected at wavelengths greater than 100 μ\mum. Our image calculations predict that the diffuse emission from edge-on Class I and II sources should be detectable in the mid-IR with the Space Infrared Telescope Facility (SIRTF) in nearby star forming regions (out to several hundred parsecs).Comment: A version with high-resolution images is available at http://www.astro.wisc.edu/glimpse/glimpsepubs.htm
    corecore