We interpret the correlation over five orders of magnitude between high
frequency and low frequency in a quasi-periodic oscillations (QPO) found by
Psaltis, Belloni & van der Klis (1999) for black hole (BH), neutron star (NS)
systems and then extended by Mauche (2002) to white dwarf (WD) binaries. We
argue that the observed correlation is a natural consequence of the Keplerian
disk flow adjustment to the innermost sub-Keplerian boundary conditions near
the central object. In the framework of the transition layer model the high
frequency is related to the Keplerian frequency at the outer (adjustment)
radius and the low frequency is related to the magnetoacoustic oscillation (MA)
frequency. Using a relation between the MA frequency the magnetic and gas
pressure and the density and the hydrostatic equilibrium condition in the disk
we infer a linear correlation the Keplerian frequency and the MA frequency. We
estimate the magnetic field strength near the TL outer radius for BHs NSs and
WDs. The fact that the observed high-low frequency correlation over five orders
of magnitude is valid for BHs, NSs, and down to WDs strongly rules out
relativistic models for QPO phenomena. We come to the conclusion that the QPOs
observations indicate the adjustment of the geometrically thin disk to
sub-Keplerian motion near the central object. This effect is a common feature
for a wide class of systems, starting from white dwarf binaries up to black
hole binaries.Comment: 8 pages, 1 figure, accepted for publication in the ApJ. Letters 2002
August