817 research outputs found

    Investigation of Silicon Nanoparticle-Polystyrene Hybrids

    Get PDF
    Current LED lights are created with quantum dots made of metals like selenium, tellurium, and cadmium which can be toxic. Silicon is used as a non-toxic substance and is the second most abundant element in the earth's crust. When silicon is prepared at a nanometer size, unique luminesce optical properties emerge that can be tuned using sized surface chemistry. Therefore, silicon nanoparticles can be used as an alternative emitter for LED lights. To produce hydride-terminated silicon nanoparticles we must synthesize the particles. Hydrogen silsesquioxane (HSQ) is processed at 1100 °C for one hour causing Si to cluster and form a SiO2 matrix, also known as the composite. The composite is then manually crushed in ethanol. The solution is further ground using glass beads, then filtered to get the composite powder. The final step is the HF etching. The hydride-terminated particles are then functionalized using three different methods to synthesize silicon nanoparticle-polystyrene hybrids, which determine the magnitude of luminosity and the quality of the hybrids. We spin coat each method and results were analyzed. Method 1 uses heat to functionalize hydride-terminated silicon nanoparticles with styrene. This process also causes styrene to attach to styrene to form a polystyrene chain. Method 1 gave a homogeneous mixture which yielded a consistent, bright and homogenous film. In method 2, dodecyl-terminated silicon nanoparticles are mixed with premade polystyrene. While this method gave better control of the amount of silicon nanoparticles inside the polymer hybrid, a homogeneous mixture was not created due to the different structures of polystyrene and dodecyl chains. Method 3 has dodecyl-terminated silicon with in-situ styrene polymerization. It generated a homogeneous mixture. The in-situ polymerization stabilizes the particles, allowing for brighter luminescence. Because of the stability and lower molecular weight, the mixture was easier to dissolve. We concluded that the different methods resulted in different polymer molecular weights and this created distinct properties between the polymer hybrids when spin-coating.   &nbsp

    Process Mining IPTV Customer Eye Gaze Movement Using Discrete-time Markov Chains

    Get PDF
    Human-Computer Interaction (HCI) research has extensively employed eye-tracking technologies in a variety of fields. Meanwhile, the ongoing development of Internet Protocol TV (IPTV) has significantly enriched the TV customer experience, which is of great interest to researchers across academia and industry. A previous study was carried out at the BT Ireland Innovation Centre (BTIIC), where an eye tracker was employed to record user interactions with a Video-on-Demand (VoD) application, the BT Player. This paper is a complementary and subsequent study of the analysis of eye-tracking data in our previously published introductory paper. Here, we propose a method for integrating layout information from the BT Player with mining the process of customer eye movement on the screen, thereby generating HCI and Industry-relevant insights regarding user experience. We incorporate a popular Machine Learning model, a discrete-time Markov Chain (DTMC), into our methodology, as the eye tracker records each gaze movement at a particular frequency, which is a good example of discrete-time sequences. The Markov Model is found suitable for our study, and it helps to reveal characteristics of the gaze movement as well as the user interface (UI) design on the VoD application by interpreting transition matrices, first passage time, proposed ‘most likely trajectory’ and other Markov properties of the model. Additionally, the study has revealed numerous promising areas for future research. And the code involved in this study is open access on GitHub

    Directed paths on hierarchical lattices with random sign weights

    Full text link
    We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability pp. Such path sums JJ have been used to model interference effects by hopping electrons in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition'' using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($n\to 0$) to obtain for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic'' structures that propagate as a function of pp. Finally, we derive the exact probability distribution for path sums JJ up to length L=64 for all sign probabilities.Comment: 20 pages, 12 figure

    Nonuniversal behavior of scattering between fractional quantum Hall edges

    Full text link
    Among the predicted properties of fractional quantum Hall states are fractionally charged quasiparticles and conducting edge-states described as chiral Luttinger liquids. In a system with a narrow constriction, tunneling of quasi-particles between states at different edges can lead to resistance and to shot noise. The ratio of the shot noise to the backscattered current, in the weak scattering regime, measures the fractional charge of the quasi-particle, which has been confirmed in several experiments. However, the non-linearity of the resistance predicted by the chiral Luttinger liquid theory was apparently not observed in some of these cases. As a possible explanation for these discrepancies, we consider a model where a smooth edge profile leads to formation of additional edge states. Coupling between the current carrying edge mode and the additional phonon like mode can lead to {\it nonuniversal} exponents in the current-voltage characteristic, while preserving the ratio between shot noise and the back-scattered current, for weak backscattering. For special values of the coupling, one may obtain a linear I-V behavior.Comment: 10 pages, 3 figure

    Resonance in a Tomonaga-Luttinger liquid

    Full text link
    We study a homogeneous Tomonaga-Luttinger liquid with backscattering potential. A perturbative computation of the conductance at and near resonance is given. We find that the backscattering of one electron dominates that of two electrons for an interaction parameter K≥1/3K\geq 1/3 and that the resonance point depends on temperature. Our results may be relevant for recent experiments on shot-noise in FQHE, where the charge 1/3 and not 2∗1/32*1/3 is measured on resonance.Comment: 15 pages, three Figures. v2: Definite version, Citations added, presentation improved. To appear in Phys. Rev. B, Rapid Co

    Dynamics of Dissipative Quantum Hall Edges

    Get PDF
    We examine the influence of the edge electronic density profile and of dissipation on edge magnetoplasmons in the quantum Hall regime, in a semiclassical calculation. The equilibrium electron density on the edge, obtained using a Thomas-Fermi approach, has incompressible stripes produced by energy gaps responsible for the quantum Hall effect. We find that these stripes have an unobservably small effect on the edge magnetoplasmons. But dissipation, included phenomenologically in the local conductivity, proves to produce significant oscillations in the strength and speed of edge magnetoplasmons in the quantum Hall regime.Comment: 23 pages including 10 figure

    Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads

    Full text link
    An interacting one-dimensional electron system, the Luttinger liquid, is distinct from the "conventional" Fermi liquids formed by interacting electrons in two and three dimensions. Some of its most spectacular properties are revealed in the process of electron tunneling: as a function of the applied bias or temperature the tunneling current demonstrates a non-trivial power-law suppression. Here, we create a system which emulates tunneling in a Luttinger liquid, by controlling the interaction of the tunneling electron with its environment. We further replace a single tunneling barrier with a double-barrier resonant level structure and investigate resonant tunneling between Luttinger liquids. For the first time, we observe perfect transparency of the resonant level embedded in the interacting environment, while the width of the resonance tends to zero. We argue that this unique behavior results from many-body physics of interacting electrons and signals the presence of a quantum phase transition (QPT). In our samples many parameters, including the interaction strength, can be precisely controlled; thus, we have created an attractive model system for studying quantum critical phenomena in general. Our work therefore has broadly reaching implications for understanding QPTs in more complex systems, such as cold atoms and strongly correlated bulk materials.Comment: 11 pages total (main text + supplementary

    Experimental investigation of the edge states structure at fractional filling factors

    Full text link
    We experimentally study electron transport between edge states in the fractional quantum Hall effect regime. We find an anomalous increase of the transport across the 2/3 incompressible fractional stripe in comparison with theoretical predictions for the smooth edge potential profile. We interpret our results as a first experimental demonstration of the intrinsic structure of the incompressible stripes arising at the sample edge in the fractional quantum Hall effect regime.Comment: 5 pages, 5 figures included. Submitted to JETP Letter

    Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping

    Full text link
    We investigate the magneto-conductance (MC) anisotropy in the variable range hopping regime, caused by quantum interference effects in three dimensions. When no spin-orbit scattering is included, there is an increase in the localization length (as in two dimensions), producing a large positive MC. By contrast, with spin-orbit scattering present, there is no change in the localization length, and only a small increase in the overall tunneling amplitude. The numerical data for small magnetic fields BB, and hopping lengths tt, can be collapsed by using scaling variables B⊥t3/2B_\perp t^{3/2}, and B∥tB_\parallel t in the perpendicular and parallel field orientations respectively. This is in agreement with the flux through a `cigar'--shaped region with a diffusive transverse dimension proportional to t\sqrt{t}. If a single hop dominates the conductivity of the sample, this leads to a characteristic orientational `finger print' for the MC anisotropy. However, we estimate that many hops contribute to conductivity of typical samples, and thus averaging over critical hop orientations renders the bulk sample isotropic, as seen experimentally. Anisotropy appears for thin films, when the length of the hop is comparable to the thickness. The hops are then restricted to align with the sample plane, leading to different MC behaviors parallel and perpendicular to it, even after averaging over many hops. We predict the variations of such anisotropy with both the hop size and the magnetic field strength. An orientational bias produced by strong electric fields will also lead to MC anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR

    Experimental Evidence for Resonant-Tunneling in a Luttinger-Liquid

    Full text link
    We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusaki's model for resonant tunneling in a Luttinger-liquid.Comment: 3 pages, 5 figures, corrected typo
    • …
    corecore