55 research outputs found
The role of the neuropilins in tumour angiogenesis and tumour progression
Neuropilins (NRPs) are multifunctional receptors for class 3 semaphorins, which are responsible for axon guidance during the development of the nervous system in vertebrates, and for vascular endothelial growth factors (VEGFs), essential for vascular development and angiogenesis in disease. There is now a large body of evidence that NRPs also mediate tumour angiogenesis and progression, and they have also emerged as novel therapeutic targets in cancer. Many neoplastic cell types express NRPs, and NRP1 and NRP2 upregulation is positively correlated with tumour progression and poor patient prognosis in several cancer types (Pellet-Many et al. Biochem J 411:211–226, 2008). Recently, NRPs have been shown to play novel roles in the tumour stem cell niche and in regulation of tumour immunity. This chapter focuses on the role of NRPs in tumour angiogenesis and tumour progression, focusing on the role of the NRPs as modulators of VEGF function and highlighting approaches to therapeutic targeting of NRPs in cancer
Demethylation of the Coding Region Triggers the Activation of the Human Testis-Specific PDHA2 Gene in Somatic Tissues
Human PDHA2 is a testis-specific gene that codes for the E1α subunit of Pyruvate Dehydrogenase Complex (PDC), a crucial enzyme system in cell energy metabolism. Since activation of the PDHA2 gene in somatic cells could be a new therapeutic approach for PDC deficiency, we aimed to identify the regulatory mechanisms underlying the human PDHA2 gene expression. Functional deletion studies revealed that the −122 to −6 promoter region is indispensable for basal expression of this TATA-less promoter, and suggested a role of an epigenetic program in the control of PDHA2 gene expression. Indeed, treatment of SH-SY5Y cells with the hypomethylating agent 5-Aza-2′-deoxycytidine (DAC) promoted the reactivation of the PDHA2 gene, by inducing the recruitment of the RNA polymerase II to the proximal promoter region and the consequent increase in PDHA2 mRNA levels. Bisulfite sequencing analysis revealed that DAC treatment induced a significant demethylation of the CpG island II (nucleotides +197 to +460) in PDHA2 coding region, while the promoter region remained highly methylated. Taken together with our previous results that show an in vivo correlation between PDHA2 expression and the demethylation of the CpG island II in testis germ cells, the present results show that internal methylation of the PDHA2 gene plays a part in its repression in somatic cells. In conclusion, our data support the novel finding that methylation of the PDHA2 coding region can inhibit gene transcription. This represents a key mechanism for absence of PDHA2 expression in somatic cells and a target for PDC therapy
Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.This work was funded by the Wellcome Trust ( 095645/Z/11/Z ), BBSRC ( BB/K010867/1 ), EU NoE Epigenesys, and FEBS (Long-term fellowship to I.M.)
Merged consensus clustering to assess and improve class discovery with microarray data
<p>Abstract</p> <p>Background</p> <p>One of the most commonly performed tasks when analysing high throughput gene expression data is to use clustering methods to classify the data into groups. There are a large number of methods available to perform clustering, but it is often unclear which method is best suited to the data and how to quantify the quality of the classifications produced.</p> <p>Results</p> <p>Here we describe an R package containing methods to analyse the consistency of clustering results from any number of different clustering methods using resampling statistics. These methods allow the identification of the the best supported clusters and additionally rank cluster members by their fidelity within the cluster. These metrics allow us to compare the performance of different clustering algorithms under different experimental conditions and to select those that produce the most reliable clustering structures. We show the application of this method to simulated data, canonical gene expression experiments and our own novel analysis of genes involved in the specification of the peripheral nervous system in the fruitfly, <it>Drosophila melanogaster</it>.</p> <p>Conclusions</p> <p>Our package enables users to apply the merged consensus clustering methodology conveniently within the R programming environment, providing both analysis and graphical display functions for exploring clustering approaches. It extends the basic principle of consensus clustering by allowing the merging of results between different methods to provide an averaged clustering robustness. We show that this extension is useful in correcting for the tendency of clustering algorithms to treat outliers differently within datasets. The R package, <it>clusterCons</it>, is freely available at CRAN and sourceforge under the GNU public licence.</p
Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells.
Global demethylation is part of a conserved program of epigenetic reprogramming to naive pluripotency. The transition from primed hypermethylated embryonic stem cells (ESCs) to naive hypomethylated ones (serum-to-2i) is a valuable model system for epigenetic reprogramming. We present a mathematical model, which accurately predicts global DNA demethylation kinetics. Experimentally, we show that the main drivers of global demethylation are neither active mechanisms (Aicda, Tdg, and Tet1-3) nor the reduction of de novo methylation. UHRF1 protein, the essential targeting factor for DNMT1, is reduced upon transition to 2i, and so is recruitment of the maintenance methylation machinery to replication foci. Concurrently, there is global loss of H3K9me2, which is needed for chromatin binding of UHRF1. These mechanisms synergistically enforce global DNA hypomethylation in a replication-coupled fashion. Our observations establish the molecular mechanism for global demethylation in naive ESCs, which has key parallels with those operating in primordial germ cells and early embryos
Biotransformations of nitriles mediated by in vivo nitrile hydratase of Rhodococcus erythropolis ATCC 4277 heterologously expressed in E. Coli
Nitrile hydratase activity has been reported as an exciting alternative for the industrial production of a variety of compounds overwhelming its chemical counterpart; despite this, until now, a few enzymes have been thoroughly studied. Efficient expression of nitrile hydratase enzymes has been the bottleneck to explore this activity. Here, we report the cloning and expression of Rhodococcus erythropolis ATCC 4277 nitrile hydratase (α- and β-subunits) and the correspondent activator gene. Furthermore, substrate scope with whole cells of recombinant E. coli demonstrates that this Fe-type NHase could hydrate a wide range of aliphatic and aromatic nitrile with high conversion rates and moderate enantiomeric excess
- …