255 research outputs found

    On the screening of the potential between adjoint sources in QCD3QCD_3

    Get PDF
    We calculate the potential between adjoint sources in SU(2)SU(2) pure gauge theory in three dimensions. We investigate whether the potential saturates at large separations due to the creation of a pair of gluelumps, colour-singlet states formed when glue binds to an adjoint source.Comment: 3 pages, uuencoded Z-compressed postscript file, contribution to Lattice '9

    Status of the QCDSP project

    Full text link
    We describe the completed 8,192-node, 0.4Tflops machine at Columbia as well as the 12,288-node, 0.6Tflops machine assembled at the RIKEN Brookhaven Research Center. Present performance as well as our experience in commissioning these large machines is presented. We outline our on-going physics program and explain how the configuration of the machine is varied to support a wide range of lattice QCD problems, requiring a variety of machine sizes. Finally a brief discussion is given of future prospects for large-scale lattice QCD machines.Comment: LATTICE98(machines), 3 pages, 1 picture, 1 figur

    Flavor-Changing Processes in Extended Technicolor

    Full text link
    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard-model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R)(L,R) components of the quarks and charged leptons transform under the ETC group. We consider K0Kˉ0K^{0} - \bar K^0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the LL and RR components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the LL and RR components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intra-family mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC-representation assignment of the LL and RR components of the quarks, as well as the leptons. We draw lessons for future ETC model building.Comment: 25 page

    Chirality Correlation within Dirac Eigenvectors from Domain Wall Fermions

    Full text link
    In the dilute instanton gas model of the QCD vacuum, one expects a strong spatial correlation between chirality and the maxima of the Dirac eigenvectors with small eigenvalues. Following Horvath, {\it et al.} we examine this question using lattice gauge theory within the quenched approximation. We extend the work of those authors by using weaker coupling, β=6.0\beta=6.0, larger lattices, 16416^4, and an improved fermion formulation, domain wall fermions. In contrast with this earlier work, we find a striking correlation between the magnitude of the chirality density, ψ(x)γ5ψ(x)|\psi^\dagger(x)\gamma^5\psi(x)|, and the normal density, ψ(x)ψ(x)\psi^\dagger(x)\psi(x), for the low-lying Dirac eigenvectors.Comment: latex, 25 pages including 12 eps figure

    ``GLUELUMP'' SPECTRUM AND ADJOINT SOURCE POTENTIAL IN LATTICE QCD3_3

    Get PDF
    We calculate the potential between ``quarks'' which are in the adjoint representation of SU(2) color in the three-dimensional lattice theory. We work in the scaling region of the theory and at large quark separations RR. We also calculate the masses MQgM_{Qg} of color-singlet bound states formed by coupling an adjoint quark to adjoint glue (``gluelumps''). Good scaling behavior is found for the masses of both magnetic (angular momentum J=0J=0) and electric (J=1J=1) gluelumps, and the magnetic gluelump is found to be the lowest-lying state. It is naively expected that the potential for adjoint quarks should saturate above a separation RscrR_{\rm scr} where it becomes energetically favorable to produce a pair of gluelumps. We obtain a good estimate of the naive screening distance RscrR_{\rm scr}. However we find little evidence of saturation in the potential out to separations RR of about twice RscrR_{\rm scr}.Comment: 8 pages plus 8 figures in 2 postscript files (uuencoded

    A new scheme for the running coupling constant in gauge theories using Wilson loops

    Full text link
    We propose a new renormalization scheme of the running coupling constant in general gauge theories using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter can be calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step-scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.Comment: 30pages, figs and comments added,reference added(v3

    Study of the finite temperature transition in 3-flavor QCD using the R and RHMC algorithms

    Get PDF
    We study the finite temperature transition in QCD with three flavors of equal masses using the R and RHMC algorithm on lattices with temporal extent N_{\tau}=4 and 6. For the transition temperature in the continuum limit we find r_0 T_c=0.429(8) for the light pseudo-scalar mass corresponding to the end point of the 1st order transition region. When comparing the results obtained with the R and RHMC algorithms for p4fat3 action we see no significant step-size errors down to a lightest pseudo-scalar mass of m_{ps} r_0=0.4.Comment: 13 pages, RevTeX, 10 figure
    corecore