1,115 research outputs found

    Faster Compact On-Line Lempel-Ziv Factorization

    Get PDF
    We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that runs in O(NlogN)O(N\log N) time and uses only O(Nlogσ)O(N\log\sigma) bits of working space, where NN is the length of the string and σ\sigma is the size of the alphabet. This is a notable improvement compared to the performance of previous on-line algorithms using the same order of working space but running in either O(Nlog3N)O(N\log^3N) time (Okanohara & Sadakane 2009) or O(Nlog2N)O(N\log^2N) time (Starikovskaya 2012). The key to our new algorithm is in the utilization of an elegant but less popular index structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We also present an opportunistic variant of our algorithm, which, given the run length encoding of size mm of a string of length NN, computes the Lempel-Ziv factorization on-line, in O(mmin{(loglogm)(loglogN)logloglogN,logmloglogm})O\left(m \cdot \min \left\{\frac{(\log\log m)(\log \log N)}{\log\log\log N}, \sqrt{\frac{\log m}{\log \log m}} \right\}\right) time and O(mlogN)O(m\log N) bits of space, which is faster and more space efficient when the string is run-length compressible

    Fully dynamic data structure for LCE queries in compressed space

    Get PDF
    A Longest Common Extension (LCE) query on a text TT of length NN asks for the length of the longest common prefix of suffixes starting at given two positions. We show that the signature encoding G\mathcal{G} of size w=O(min(zlogNlogM,N))w = O(\min(z \log N \log^* M, N)) [Mehlhorn et al., Algorithmica 17(2):183-198, 1997] of TT, which can be seen as a compressed representation of TT, has a capability to support LCE queries in O(logN+loglogM)O(\log N + \log \ell \log^* M) time, where \ell is the answer to the query, zz is the size of the Lempel-Ziv77 (LZ77) factorization of TT, and M4NM \geq 4N is an integer that can be handled in constant time under word RAM model. In compressed space, this is the fastest deterministic LCE data structure in many cases. Moreover, G\mathcal{G} can be enhanced to support efficient update operations: After processing G\mathcal{G} in O(wfA)O(w f_{\mathcal{A}}) time, we can insert/delete any (sub)string of length yy into/from an arbitrary position of TT in O((y+logNlogM)fA)O((y+ \log N\log^* M) f_{\mathcal{A}}) time, where fA=O(min{loglogMloglogwlogloglogM,logwloglogw})f_{\mathcal{A}} = O(\min \{ \frac{\log\log M \log\log w}{\log\log\log M}, \sqrt{\frac{\log w}{\log\log w}} \}). This yields the first fully dynamic LCE data structure. We also present efficient construction algorithms from various types of inputs: We can construct G\mathcal{G} in O(NfA)O(N f_{\mathcal{A}}) time from uncompressed string TT; in O(nloglognlogNlogM)O(n \log\log n \log N \log^* M) time from grammar-compressed string TT represented by a straight-line program of size nn; and in O(zfAlogNlogM)O(z f_{\mathcal{A}} \log N \log^* M) time from LZ77-compressed string TT with zz factors. On top of the above contributions, we show several applications of our data structures which improve previous best known results on grammar-compressed string processing.Comment: arXiv admin note: text overlap with arXiv:1504.0695

    Deterministic sub-linear space LCE data structures with efficient construction

    Get PDF
    Given a string SS of nn symbols, a longest common extension query LCE(i,j)\mathsf{LCE}(i,j) asks for the length of the longest common prefix of the iith and jjth suffixes of SS. LCE queries have several important applications in string processing, perhaps most notably to suffix sorting. Recently, Bille et al. (J. Discrete Algorithms 25:42-50, 2014, Proc. CPM 2015: 65-76) described several data structures for answering LCE queries that offers a space-time trade-off between data structure size and query time. In particular, for a parameter 1τn1 \leq \tau \leq n, their best deterministic solution is a data structure of size O(n/τ)O(n/\tau) which allows LCE queries to be answered in O(τ)O(\tau) time. However, the construction time for all deterministic versions of their data structure is quadratic in nn. In this paper, we propose a deterministic solution that achieves a similar space-time trade-off of O(τmin{logτ,lognτ})O(\tau\min\{\log\tau,\log\frac{n}{\tau}\}) query time using O(n/τ)O(n/\tau) space, but significantly improve the construction time to O(nτ)O(n\tau).Comment: updated titl

    Polarization Effects in Chargino Production at High Energy γγ\gamma\gamma Colliders

    Full text link
    We investigate the chargino production process γγW~+W~\gamma\gamma\rightarrow\tilde{W}^{+}\tilde{W}^{-} at high energy γγ\gamma\gamma colliders in the framework of the minimal supersymmetric standard model (MSSM). Here the high energy γ\gamma beams are obtained by the backward Compton scattering of the laser flush by the electron in the basic linear TeV eeee colliders. We consider the polarization of the laser photons as well as the electron beams. Appropriate beam polarization could be effective to enhance the cross section and for us to extract the signal from the dominant background γγW+W\gamma\gamma\rightarrow{W}^{+}{W}^{-}.Comment: 7 pages, latex , 3 figures are available upon reques

    Spin polarization in a T-shape conductor induced by strong Rashba spin-orbit coupling

    Full text link
    We investigate numerically the spin polarization of the current in the presence of Rashba spin-orbit interaction in a T-shaped conductor proposed by A.A. Kiselev and K.W. Kim (Appl. Phys. Lett. {\bf 78} 775 (2001)). The recursive Green function method is used to calculate the three terminal spin dependent transmission probabilities. We focus on single-channel transport and show that the spin polarization becomes nearly 100 % with a conductance close to e2/he^{2}/h for sufficiently strong spin-orbit coupling. This is interpreted by the fact that electrons with opposite spin states are deflected into an opposite terminal by the spin dependent Lorentz force. The influence of the disorder on the predicted effect is also discussed. Cases for multi-channel transport are studied in connection with experiments
    corecore