
Faster Compact On-Line Lempel-Ziv Factorization
Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga,
and Masayuki Takeda

Department of Informatics, Kyushu University, Nishiku, Fukuoka, Japan
{tomohiro.i,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract
We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that
runs in O(N logN) time and uses only O(N log σ) bits of working space, where N is the length
of the string and σ is the size of the alphabet. This is a notable improvement compared to the
performance of previous on-line algorithms using the same order of working space but running
in either O(N log3 N) time (Okanohara & Sadakane 2009) or O(N log2 N) time (Starikovskaya
2012). The key to our new algorithm is in the utilization of an elegant but less popular in-
dex structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We
also present an opportunistic variant of our algorithm, which, given the run length encoding of
size m of a string of length N , computes the Lempel-Ziv factorization of the string on-line, in
O
(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time and O(m logN) bits of space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Lempel-Ziv Factorization, String Index

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.675

1 Introduction

The Lempel-Ziv (LZ) factorization of a string [20], discovered over 35 years ago, captures
important properties concerning repeated occurrences of substrings in the string, and has
numerous applications in the field of data compression, compressed full text indices [12],
and is also the key component to various efficient algorithms on strings [11, 6]. Therefore,
a large amount of work has been devoted to its efficient computation, especially in the
off-line setting where the text is static, and the LZ factorization can be computed in as
fast as O(N) time assuming an integer alphabet, using O(N logN) bits of space (see [1]
for a survey; more recent results are in [14, 10, 7, 9]). In this paper, we consider the more
difficult and challenging on-line setting, where new characters may be appended to the
end of the string. If we may use O(N logN) bits of space, the problem can be solved in
O(N log σ) time where σ is the size of the alphabet, by use of string indices such as suffix
trees [19] and on-line algorithms to construct them [18]. However, when σ is small and
N is very large (e.g. DNA), the O(N logN) bits space complexity is much larger than
the N log σ bits of the input text, and can be prohibitive. To solve this problem, space
efficient on-line algorithms for LZ factorization based on succinct data structures have
been proposed. Okanohara and Sadakane [15] gave an algorithm that runs in O(N log3 N)
time using N log σ + o(N log σ) + O(N) bits of space. Later Starikovskaya [17], achieved
O(N log2 N) time using O(N log σ) bits of space, assuming logσ N characters are packed in
a machine word. Kärkkäinen et al. [8] proposed an LZ factorization algorithm that works in
O(Ntd) time and N log σ +O(N logN/d) bits of space with dN/de delay (i.e., it processes
dN/de characters in a batch) for any d ≥ 1, where t is the time for a rank query on a string
over an alphabet of size σ. When d = Θ(logσ N), their algorithm runs in O(Nt logN/ log σ)

© Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 675–686

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918540?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.675
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

676 Faster Compact On-Line Lempel-Ziv Factorization

time and O(N log σ) bits of space. However, the delay then becomes Θ(N log σ/ logN),
which seems to be too large to be called on-line.

In this paper, we propose a new on-line LZ factorization algorithm running in O(N logN)
time using O(N log σ) bits of space, which is a notable improvement compared to the run-
times of the previous on-line algorithms while still keeping the working space within a
constant factor of the input text. Our algorithm is based on a novel application of a full
text index called Directed Acyclic Word Graphs, or DAWGs [4], which, despite its elegance,
has not received as much attention as suffix trees. To achieve a more efficient algorithm, we
exploit an interesting feature of the DAWG structure that, unlike suffix trees, allows us to
collect information concerning the left context of strings into each state in an efficient and
on-line manner. We further show that the DAWG allows for an opportunistic variant of the
algorithm which is more time and space efficient when the run length encoding (RLE) of
the string is small. Given the RLE of size m ≤ N of the string, our on-line algorithm runs
in O

(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
= o(m logm) time using O(m logN) bits of

space.

2 Preliminaries

Let Σ = {1, . . . , σ} be a finite integer alphabet. An element of Σ∗ is called a string. The
length of a string S is denoted by |S|. The empty string ε is the string of length 0. Let
Σ+ = Σ∗ − {ε}. For a string S = XY Z, X, Y and Z are called a prefix, substring, and suffix
of S, respectively. The set of prefixes and substrings of S are denoted by Prefix(S) and
Substr(S), respectively. The longest common prefix (lcp) of strings X,Y is the longest string
in Prefix(X) ∩ Prefix(Y). The i-th character of a string S is denoted by S[i] for 1 ≤ i ≤ |S|,
and the substring of a string S that begins at position i and ends at position j is denoted
by S[i..j] for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i..j] = ε if j < i. A position i is
called an occurrence of X in S if S[i..i + |X| − 1] = X. For any string S = S[1..N], let
Srev = S[N] · · ·S[1] denote the reversed string. For any character a ∈ Σ and integer i ≥ 0,
let a0 = ε, ai = ai−1a. We call i the exponent of ai.

The default base of logarithms will be 2. Our model of computation is the unit cost word
RAM with the machine word size at least logN bits. For an input string S of length N ,
let r = logσ N = logN

logσ . For simplicity, assume that logN is divisible by log σ, and that N
is divisible by r. A string of length r, called a meta-character, consists of logN bits, and
therefore fits in a single machine word. Thus, a meta-character can also be transparently
regarded as an element in the integer alphabet Σr = {1, . . . , N}. We assume that given
1 ≤ i ≤ N − r + 1, any meta-character A = S[i..i+ r − 1] can be retrieved in constant time.
Also, we can pre-compute an array of size 2

logN
2 occupying O(

√
N logN) = o(N) bits in o(N)

time, so Arev can be computed in constant time given A. We call a string on the alphabet Σr
of meta-characters, a meta-string. Any string S whose length is divisible by r can be viewed
as a meta-string S of length n = |S|

r . We write 〈S〉 when we explicitly view string S as a
meta-string, where 〈S〉[j] = S[(j− 1)r+ 1..jr] for each j ∈ [1, n]. Such range [(j− 1)r+ 1, jr]
of positions will be called meta-blocks and the beginning positions (j− 1)r+ 1 of meta-blocks
will be called block borders. For clarity, the length n of a meta-string 〈S〉 will be denoted by
‖〈S〉‖. Meta-strings are sometimes called packed strings. Note that n logN = N log σ.

2.1 LZ Factorization
There are several variants of LZ factorization, and as in most recent work, we consider the
variant also called s-factorization [5]. The s-factorization of a string S is the factorization

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 677

S = f1 · · · fz where each s-factor fi ∈ Σ+ (i = 1, . . . , z) is defined as follows: f1 = S[1]. For
i ≥ 2: if S[|f1 · · · fi−1|+1] = c ∈ Σ does not occur in f1 · · · fi−1, then fi = c. Otherwise, fi is
the longest prefix of fi · · · fz that occurs at least twice in f1 · · · fi. Notice that self-referencing
is allowed, i.e., the previous occurrence of fi may overlap with itself. Each s-factor can be
represented in a constant number of words, i.e., either as a single character or a pair of
integers representing the position of a previous occurrence of the factor and its length.

2.2 Tools
Let B be a bit array of length N . For any position x of B, let rank(B, x) denote the number
of 1’s in B[1..x]. For any integer j, let select(B, j) denote the position of the jth 1 in B.
For any pair of positions x, y (x ≤ y) of B, the number of 1’s in B[x..y] can be expressed
as pc(B, x, y) = rank(B, y) − rank(B, x − 1). It is possible to maintain B and support
rank/select queries and bit flip operations in O(logN) time, using N + o(N) bits of space
(e.g. Raman et al. [16]).

Directed Acyclic Word Graphs (DAWG) are a variant of suffix indices, similar to suffix
trees or suffix arrays. The DAWG of a string S is the smallest partial deterministic finite
automaton that accepts all suffixes of S. Thus, an arbitrary string is a substring of S iff it
can be traversed from the source of the DAWG. While each edge of the suffix tree corresponds
to a substring of S, an edge of a DAWG corresponds to a single character.

I Theorem 1 (Blumer et al. [4]). The numbers of states, edges and suffix links of the DAWG
of string S are O(|S|), independent of the alphabet size σ. The DAWG augmented with the
suffix links can be constructed in an on-line manner in O(|S| log σ) time using O(|S| log |S|)
bits of space.

We give a more formal presentation of DAWGs below. Let EndPosS(u) = {j | u =
S[i..j], 1 ≤ i ≤ j ≤ N}. Define an equivalence relation on Substr(S) such that for any
u,w ∈ Substr(S), u ≡S w ⇐⇒ EndPosS(u) = EndPosS(w), and denote the equivalence
class of u ∈ Substr(S) as [u]S . When clear from the context, we abbreviate the above
notations as EndPos, ≡ and [u], respectively. Note that for any two elements in [u],
one is a suffix of the other. We denote by ←−u the longest member of [u]. The states
V and edges E of the DAWG can be characterized as V = {[u] | u ∈ Substr(S)} and
E = {([u], a, [ua]) | u, ua ∈ Substr(S), u 6≡ ua}. We also define the set G of labeled reversed
edges, called suffix links, by G = {([au], a, [u]) | u, au ∈ Substr(S), u = ←−u }. An edge
([u], a, [ua]) ∈ E is called a primary edge if |←−u |+ 1 = |←−ua|, and a secondary edge otherwise.
We call [ua] a primary (resp. secondary) child of [u] if the edge is primary (resp. secondary).
By storing |←−u | at each state [u], we can determine whether an edge ([u], a, [ua]) is primary
or secondary in O(1) time using O(|S| log |S|) bits of total space.

Whenever a state [u] is created during the on-line construction of the DAWG, it is
possible to assign the position pos[u] = min EndPosS(u) to that state. If state u is reached
by traversing the DAWG from the source with string p, this means that p = S[pos[u] −
|p| + 1..pos[u]], and thus the first occurrence pos[u] − |p| + 1 of p can be retrieved, using
O(|S| log |S|) bits of total space.

For any set P of points on a 2-D plane, consider query find_any(P, Ih, It) which returns
an arbitrary element in P that is contained in a given orthogonal range Ih × It if such exists,
and returns nil otherwise. A simple corollary of the following result by Blelloch [3]:

I Theorem 2 (Blelloch [3]). The 2D dynamic orthogonal range reporting problem on n

elements can be solved using O(n logn) bits of space so that insertions and deletions take

STACS’14

678 Faster Compact On-Line Lempel-Ziv Factorization

O(logn) amortized time and range reporting queries take O(logn+ k logn/ log logn) time,
where k is the number of output elements.

is that the query find_any(P, Ih, It) can be answered in O(logn) time on a dynamic set P
of points. It is also possible to extend the find_any query to return, in O(logn) time, a
constant number of elements contained in the range.

3 On-line LZ Factorization with Packed Strings

The problem setting and high-level structure of our algorithm follows that of
Starikovskaya [17], but we employ somewhat different tools. The goal of this section is to
prove the following theorem.

I Theorem 3. The s-factorization of any string S ∈ Σ∗ of length N can be computed in an
on-line manner in O(N logN) time and O(N log σ) bits of space.

By on-line, we assume that the input string S is given r characters at a time, and we are
to compute the s-factorization of the string S[1..jr] for all j = 1, . . . , n. Since only the
last factor can change for each j, the whole s-factorization need not be re-calculated so we
will focus on describing how to compute each s-factor fi by extending fi while a previous
occurrence exists. We show how to maintain dynamic data structures using O(N log σ) bits
in O(N logN) total time that allow us to (1) determine whether |fi| < r in O(1) time, and
if so, compute fi in O(|fi| logN) time (Lemma 4), (2) compute fi in O(|fi| logN) time
when |fi| ≥ r (Lemma 9), and (3) retrieve a previous occurrence of fi in O(|fi| logN) time
(Lemma 11). Since

∑z
i=1 |fi| = N , these three lemmas prove Theorem 3.

The difference between our algorithm and that of Starikovskaya [17] can be summarized
as follows: For (1), we show that a dynamic succinct bit-array that supports rank/select
queries and flip operations can be used, as opposed to a suffix trie employed in [17]. This
allows our algorithm to use a larger meta-character size of r = logσ N instead of logσ N

4
in [17], where the 1/4 factor was required to keep the size of the suffix trie within O(N log σ)
bits. Hence, our algorithm can pack characters more efficiently into a word. For (2), we show
that by using a DAWG on the meta-string of length n = N/r which occupies only O(N log σ)
bits, we can reduce the problem of finding valid extensions of a factor to dynamic orthogonal
range reporting queries, for which a space efficient dynamic data structure with O(logn)
time query and update exists [3]. In contrast, Starikovskaya’s algorithm uses a suffix tree on
the meta-string and dynamic wavelet trees requiring O(log2 n) time for queries and updates,
which is the bottleneck of her algorithm. For (3), we develop a technique for the case |fi| < r,
which may be of independent interest.

In what follows, let li =
∑i−1
k=1 |fk|, i.e., li is the total length of the first i− 1 s-factors.

Although our presentation assumes that N is known, this can be relaxed at the cost of a
constant factor by simply restarting the entire algorithm when the length of the input string
doubles.

3.1 Algorithm for |fi| < r

Consider a bit array Mk[1..N]. For any meta-characterA ∈ Σr, let Mk[A] = 1 iff S[l+1..l+r] =
A for some 0 ≤ l ≤ k − r, i.e., Mk[A] indicates whether A occurs as a substring in S[1..k].
We will dynamically maintain a single bit array representing Mk, for increasing values of k.
For any short string t (|t| < r), let Dt and Ut be, respectively, the lexicographically smallest

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 679

and largest meta-characters having t as a prefix, namely, the bit-representation1 of Dt is the
concatenation of the bit-representation of t and 0(r−|t|) log σ, and the bit-representation of Ut
is the concatenation of the bit-representation of t and 1(r−|t|) log σ. These representations can
be obtained from t in constant time using standard bit operations. Then, the set of meta-
characters that have t as a prefix can be represented by the interval tr(t) = [Dt, Ut]. It holds
that t occurs in S[1..k − r + |t|] iff some element in Mk[Dt..Ut] is 1, i.e. pc(Mk, Dt, Ut) > 0.
Therefore, we can check whether or not a string of length up to r occurs at some position
p ≤ li by using Mli+r−1.

For any 0 ≤ m ≤ r, let tm = S[li + 1..li +m]. We have that |fi| < r iff Mli+r−1[tr] = 0,
which can be determined in O(1) time. Assume |fi| < r, and let mi = max{m | 0 ≤
m < r, pc(Mli+r−1, Dtm , Utm) > 0}, where mi = 0 indicates that S[li + 1] does not occur
in S[1..li]. From the definition of s-factorization, we have that |fi| = max(1,mi). Notice
that mi can be computed by O(|fi|) rank queries on Mli+r−1, due to the monotonicity of
pc(Mli+r−1, Dtm , Utm) for increasing values of m. To maintain Mk we can use rank/select
dictionaries for a dynamic bit array of length N (e.g. [16]) mentioned in Section 2. Thus we
have:

I Lemma 4. We can maintain in O(N logN) total time, a dynamic data structure occupying
N + o(N) bits of space that allows whether or not |fi| < r to be determined in O(1) time,
and if so, fi to be computed in O(|fi| logN) time.

3.2 Algorithm for |fi| ≥ r.

To compute fi when |fi| ≥ r, we use the DAWG for the meta-string 〈S〉 which we call the
packed DAWG. While the DAWG for S requires O(N logN) bits, the packed DAWG only
requires O(N log σ) bits. However, the complication is that only substrings with occurrences
that start at block borders can be traversed from the source of the packed DAWG. In
order to overcome this problem, we will augment the packed DAWG and maintain the set
Points[u] = {(Arev, X) | ([u], X, [uX]) ∈ E,A←−u X ∈ Substr(〈S〉)} for all states [u] of the
packed DAWG. A pair (Arev, X) ∈ Points[u] represents that there exists an occurrence of
A←−u X in 〈S〉, in other words, the longest element ←−u corresponding to the state can be
extended by X and still have an occurrence in 〈S〉 immediately preceded by A.

I Lemma 5. For meta-string 〈S〉 of length n and its packed DAWG (V,E,G), the the total
number of elements in Points[u] for all states [u] ∈ V is O(n).

Proof. Consider edge ([u], X, [uX]) ∈ E. If ←−u X 6= ←−uX, i.e., the edge is secondary, it
follows that there exists a unique meta-character A = 〈S〉[pos[uX] − ‖←−u X‖] such that
A←−u X ≡〈S〉 ←−u X, namely, any occurrence of ←−u X is always preceded by A in 〈S〉. If
←−u X =←−uX, i.e., the edge is primary, then, for each distinct meta-character A preceding an
occurrence of ←−u X =←−uX in 〈S〉, there exists a suffix link ([A←−uX], A, [←−uX]) ∈ G. Therefore,
each point (Arev, X) in Points[u] can be associated to either a secondary edge from [u] or
one of the incoming suffix links to its primary child [uX]. Since each state has a unique
longest member, each state has exactly one incoming primary edge. Therefore, the total
number of elements in Points[u] for all states [u] is equal to the total number of secondary
edges and suffix links, which is O(n) due to Theorem 1. J

1 Assume that 0log N and 1log N correspond to meta-characters 1 and N , respectively.

STACS’14

680 Faster Compact On-Line Lempel-Ziv Factorization

I Lemma 6. For string S ∈ Σ∗ of length N , we can, in O(N log σ) total time and bits
of space and in an on-line manner, construct the packed DAWG (V,E,G) of S as well as
maintain Points[u] for all states [u] ∈ V so that find_any(Points[u], Ih, It) for an orthogonal
range Iv × Ih can be answered in O(logn) time.

Proof. It follows from Theorem 1 that the packed DAWG can be computed in an on-line
manner, in O(n logN) = O(N log σ) time and bits of space, since the size of the alphabet for
meta-strings is O(N) and the length of the meta-string is n = N

r . To maintain and support
find_any queries on Points efficiently, we use the dynamic data structure by Blelloch [3]
mentioned in Theorem 2. Thus from Lemma 5, the total space requirement is O(N log σ)
bits. Since each insert operation can be performed in amortized O(logn) time (no elements
are deleted in our algorithm), what remains is to show that the total number of insert
operations to Points is O(n). This is shown below by a careful analysis of the on-line DAWG
construction algorithm [4].

Assume we have the packed DAWG for a prefix u = 〈S〉[1..‖u‖] of meta-string 〈S〉.
Let B = 〈S〉[‖u‖+ 1] be the meta-character that follows u in 〈S〉. We group the updates
performed on the packed DAWG when adding B, into the following two operations: (a) the
new sink state [uB] is created, and (b) a state is split.

First, consider case (a). Let u0 = u, and consider the sequence [u1], . . . , [uq] of states
such that the suffix link of [uj] points to [uj+1] for 0 ≤ j < q, and [uq] is the first state in
the sequence which has an out-going edge labeled by B. As in [4], we use an auxiliary state
⊥ and assume that for every meta-character A ∈ Σr there is an edge (⊥, A, [ε]) leading to
the source [ε], so that there always exists such state [uq] in any sequence of suffix links. Note
that any element of [uj+1] is a suffix of any element of [uj]. The following operations are
performed. (a-1) The primary edge from the old sink [u] to the new sink [uB] is created.
No insertion is required for this edge since [uB] has no incoming suffix links. (a-2) For each
1 ≤ j < q a secondary edge ([uj], B, [uB]) is created, and the pair (Crevj , B) is inserted to
Points[uj], where Cj is the unique meta-character that immediately precedes ←−ujB in uB, i.e.,
Cj = 〈uB〉[pos[uB] − ‖←−ujB‖]. (a-3) Let ([uq], B,w) be the edge with label B from state [uq].
The suffix link of the new sink state [uB] is created and points to w. Let e = ([v], B,w) be
the primary incoming edge to w, and A be the meta-character that labels the suffix link (note
that [v] is not necessarily equal to [uq]). We then insert a new pair (Arev, B) into Points[v].

Next, consider case (b). After performing (a), node w is split if the edge ([uq], B,w) is
secondary. Let [v1] = [v], and let [v1], . . . , [vk] be the parents of the state w of the packed
DAWG for u, sorted in decreasing order of their longest member. Then, it holds that there
is a suffix link from [vh] to [vh+1] and any element of [vh+1] is a suffix of any element of
[vh] for any 1 ≤ h < k. Assume ←−viB is the longest suffix of uB that has another (previous)
occurrence in uB. (Namely, [vi] is equal to the state [uq] of (a-2) above.) If i > 1, then
the state w is split into two states [v1B] and [viB] such that [v1B] ∪ [viB] = w and any
element of [viB] is a proper suffix of any element of [v1B]. The following operations are
performed. (b-1) The secondary edge from [vi] to w becomes the primary edge to [viB],
and for all i < j ≤ k the secondary edge from [vj] to w becomes a secondary edge to [vjB].
The primary and secondary edges from [vh] to w for all 1 ≤ h < i become the primary and
secondary ones from [vh] to [v1B], respectively. Clearly the sets Points[vh] for all 1 ≤ h < i

are unchanged. Also, since edges ([vj], B, [viB]) are all secondary, the sets Points[vj] for
all i < j ≤ k are unchanged. Moreover, the element of Points[vi] that was associated to
the secondary edge to w, is now associated to the suffix link from [v1B] to [viB]. Hence,
Points[vi] is also unchanged. Consequently, there are no updates due to edge redirection.
(b-2) All outgoing edges of [v1B] are copied as outgoing edges of [viB]. Since any element of

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 681

[viB] is a suffix of any element of [v1B], the copied edges are all secondary. Hence, we insert
a pair to Points[viB] for each secondary edge, accordingly.

Thus, the total number of insert operations to Points for all states is linear in the number
of update operations during the on-line construction of the packed DAWG, which is O(n)
due to [4]. This completes the proof. J

For any string f and integer 0 ≤ m ≤ min(|f |, r − 1), let strings αm(f), βm(f), γm(f)
satisfy f = αm(f)βm(f)γm(f), |αm(f)| = m, and |βm(f)| = j′r where j′ = max{j ≥ 0 |
m + jr ≤ |f |}. We say that an occurrence of f in S has offset m (0 ≤ m ≤ r − 1), if,
in the occurrence, αm(f) corresponds to a suffix of a meta-block, βm(f) corresponds to a
sequence of meta-blocks (i.e. βm(f) ∈ Substr(〈S〉)), and γm(f) corresponds to a prefix of a
meta-block.

Let fmi denote the longest prefix of S[li + 1..N] which has a previous occurrence in S
with offset m. Thus, |fi| = max0≤m<r |fmi |. In order to compute fmi , the idea is to find
the longest prefix u of meta-string 〈βm(S[li + 1..N])〉 that can be traversed from the source
of the packed DAWG while assuring that at least one previous occurrence of u in 〈S〉 is
immediately preceded by a meta-block that has αm(S[li + 1..N]) as a suffix. It follows that
u = βm(fmi).

I Lemma 7. Given the augmented packed DAWG (V,E,G) of Lemma 6 of meta-string 〈S〉,
the longest prefix f of any string P that has an occurrence with offset m in S can be computed
in O(|f |r logn+ r logn) time.

Proof. We first traverse the packed DAWG for 〈S〉 to find βm(f). This traversal is trivial
for m = 0, so we assume m > 0. For any string t (|t| < r), let Lt and Rt be, respectively,
the lexicographically smallest and largest meta-character which has t as a suffix, namely, the
bit-representation of Lt is the concatenation of 0(r−|t|) logσ and the bit-representation of t, and
the bit-representation of Rt is the concatenation of 1(r−|t|) logσ and the bit-representation of
t. Then, the set of meta-characters that have trev as a prefix, (or, t as a suffix when reversed),
can be represented by the interval hr(t) = [Lrevt , Rrevt]. Suppose we have successfully
traversed the packed DAWG with the prefix u = 〈βm(P)〉[1..‖u‖] and want to traverse
with the next meta-character X = 〈βm(P)〉[‖u‖ + 1]. If u = ←−u , i.e. only primary edges
were traversed, then there exists an occurrence of αm(P)uX with offset m in string S

iff find_any(Points[u], hr(αm(P)), [X,X]) 6= nil. Otherwise, if u 6= ←−u , all occurrences of
u (and thus all extensions of u that can be traversed) in 〈S〉 is already guaranteed to
be immediately preceded by the unique meta-character A = 〈S〉[pos[u] − ‖u‖] such that
Arev ∈ hr(αm(P)). Thus, there exists an occurrence of αm(P)uX with offset m in string S
iff ([u], X, [uX]) ∈ E. We extend u until find_any returns nil or no edge is found, at which
point we have αm(P)u = αm(f)βm(f).

Now, γm(f) is a prefix of meta-character B = 〈βm(P)〉[‖〈u〉‖ + 1]. When u = ←−u , we
can compute γm(f) by asking find_any(Points[u], hr(αm(P)), tr(B[1..j])) for 0 ≤ j < r.
The maximum j such that find_any does not return nil gives |γm(f)|. If u 6= ←−u , γm(f)
is the longest lcp between B and any outgoing edge from [u]. This can be computed in
O(logn+ |γm(f)|) time by maintaining outgoing edges from [u] in balanced binary search
trees, and finding the lexicographic predecessor/successor B−, B+ of B in these edges, and
computing the lcp between them. The lemma follows since each find_any query takes
O(logn) time. J

From the proof of Lemma 7, βm(fmi) can be computed in O(|f
m
i |
r logn) time, and for all

0 ≤ m < r, this becomes O(|fi| logn) time. However, for computing γm(fmi), if we simply

STACS’14

682 Faster Compact On-Line Lempel-Ziv Factorization

apply the algorithm and use O(r logn) time for each fmi , the total time for all 0 ≤ m < r

would be O(r2 logn) which is too large for our goal. Below, we show that all γm(fmi) are
not required for computing max0≤m<r |fmi |, and this time complexity can be reduced.

Consider computing Fm = max0≤x≤m |fxi | for m = 0, . . . , r − 1. We first compute
f̂mi = αm(fmi)βm(fmi) using the first part of the proof of Lemma 7. We shall compute
γm(fmi) only when Fm can be larger than Fm−1 i.e., |f̂mi | + |γm(fmi)| > Fm−1. Since
|γm(fmi)| < r, this will never be the case if |f̂mi | ≤ Fm−1 − r + 1, and will always be the
case if |f̂mi | > Fm−1. For the remaining case, i.e. 0 ≤ Fm−1 − |fmi | < r − 1, Fm > Fm−1 iff
|γm(fmi)| > Fm−1− |f̂mi |. If u =←−u , this can be determined by a single find_any query with
j = Fm−1 − |f̂mi |+ 1 in the last part of the proof of Lemma 7, and if so, the rest of γm(fmi)
is computed using the find_any query for increasing j. When u 6=←−u , whether or not the
lcp between B and B− or B+ is greater than Fm−1 − |f̂mi | can be checked in constant time
using bit operations.

From the above discussion, each find_any or predecessor/successor query for computing
γm(fmi) updates Fm, or returns nil. Therefore, the total time for computing Fr−1 = |fi| is
O((r + |fi|) logn) = O(|fi| logn).

A technicality we have not mentioned yet, is when and to what extent the packed DAWG
is updated when computing fi. Let F be the length of the current longest prefix of S[li+1..N]
with an occurrence less than li + 1, found so far while computing fi. A self-referencing
occurrence of S[li + 1..li + F] can reach up to position li + F − 1. When computing fi using
the packed DAWG, F is increased by at most r characters at a time. Thus, for our algorithm
to successfully detect such self-referencing occurrences, the packed DAWG should be built up
to the meta-block that includes position li + F − 1 + r and updated when F increases. This
causes a slight problem when computing fmi for some m; we may detect a substring which
only has an occurrence larger than li during the traversal of the DAWG. However, from the
following lemma, the number of such future occurrences that update F can be limited to a
constant number, namely two, and hence by reporting up to three elements in each find_any
query that may update F , we can obtain an occurrence less than li + 1, if one exists. These
occurrences can be retrieved in O(logN) time in this case, as described in Section 3.3.

I Lemma 8. During the computation of fmi , there can be at most two future occurrences of
fmi that will update F .

Proof. As mentioned above, the packed DAWG is built up to the meta string 〈S[1..s]〉
where s = d li+F+r−1

r er. An occurrence of fmi possibly greater than li can be written as
pm,k = d lir er −m + 1 + kr, where k = 0, 1, For the occurrence to be able to update
F and also be detected in the packed DAWG, it must hold that s > pm,k + F . Since
li + F + 2r − 2 ≥ s > pm,k + F ≥ li −m+ 1 + kr + F , k should satisfy (2− k)r ≥ 1−m,
and thus can only be 0 or 1. J

The main result of this subsection is the following:

I Lemma 9. We can maintain in a total of O(N logN) time, a dynamic data structure
occupying O(N log σ) bits of space that allows fi to be computed in O(|fi| logN) time, when
|fi| ≥ r.

3.3 Retrieving a Previous Occurrence of fi

If |fi| ≥ r, let fi = fmi , Arev ∈ hr(αm(fi)), u = βm(fi), and X ∈ tr(γm(fi)) where A and X
were found during the traversal of the packed DAWG. We can obtain the occurrence of fi by
simple arithmetic on the ending positions stored at each state, i.e., from pos[uX] if uX 6=

←−
uX

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 683

or m = 0, from pos[AuX] otherwise. State [AuX] can be reached in O(logN) time from state
[uX], by traversing the suffix link in the reverse direction.

If |fi| < r, then fi is a substring of a meta-character. Let Ai be any previously occurring
meta-character which has fi as a prefix and satisfy Mli+r−1[Ai] = 1, thus giving a previous
occurrence of fi. Since Ai is any meta-character in the range tr(fi) = [Dtm , Utm] with a
set bit, Ai can be retrieved in O(logN) time by Ai = select(Mli+r−1, rank(Mli+r−1, Utm)).
Unfortunately, we cannot afford to explicitly maintain previous occurrences for all N meta-
characters, since this would cost O(N logN) bits of space. We solve this problem in two
steps.

First, consider the case that a previous occurrence of fi crosses a block border, i.e.
has an occurrence with some offset 1 ≤ m ≤ |fi| − 1, and fi = αm(fi)γm(fi). For each
m = 1, . . . , |fi|−1, we ask find_any(Points[ε], hr(αm(fi)), tr(γm(fi))). If a pair (Arev, X) is
returned, this means that AX occurs in 〈S〉 and A[r−m+1..r] = αm(fi) and X[1..γm(fi)] =
γm(fi). Thus, a previous occurrence of fi can be computed from pos[AX]. The total time
required is O(|fi| logn). If all the find_any queries returned nil, this implies that no
occurrence of fi crosses a block border and fi occurs only inside meta-blocks. We develop an
interesting technique to deal with this case.

I Lemma 10. For string S[1..k] and increasing values of 1 ≤ k ≤ N , we can maintain a
data structure in O(N logN) total time and O(N log σ) bits of space that, given any meta-
character A, allows us to retrieve a meta-character A′ that corresponds to a meta block of S,
and some integer d such that A′[1 + d..r] = A[1..r − d] and 0 ≤ d ≤ dA,k, in O(logN) time,
where dA,k = min{(l − 1) mod r | 1 ≤ l ≤ k − r + 1, A = S[l..l + r − 1]}. 7

Proof. Consider a tree Tk where nodes are the set of meta-characters occurring in S[1..k].
The root is 〈S〉[1]. For any meta-character A 6= 〈S〉[1], the parent B of A must satisfy
B[2..r] = A[1..r− 1] and A 6= B. Given A, its parent B can be encoded by a single character
B[1] ∈ Σ that occupies log σ bits and can be recovered from B[1] and A in constant time by
simple bit operations. Thus, together with Mk used in Section 3.1 which indicates which
meta-characters are nodes of Tk, the tree can be encoded with O(N log σ) bits of space (recall
that there are only N distinct meta-characters). We also maintain another bit vector Xk of
length N so that we can determine in constant time, whether a node in Tk corresponds to a
meta-block. The lemma can be shown if we can maintain the tree for increasing k so that
for any node A in the tree, either A corresponds to a meta-block (dA,k = 0), or, A has at
least one ancestor at most dA,k nodes above it that corresponds to a meta-block. Assume
that we have Tk−1, and want to update it to Tk. Let A = S[k − r + 1..k]. If A previously
corresponded to or the new occurrence corresponds to a meta-block, then, dA,k = 0 and we
simply set Xk[A] = 1 and we are done. Otherwise, let B = S[k − r..k − 1] and denote by C
the parent of A in Tk−1, if there was a previous occurrence of A. Based on the assumption
on Tk−1, let xB ≤ dB,k−1 = dB,k and xC be the distance to the closest ancestor of B and
C, respectively, that correspond to a meta-block. We also have that dA,k−1 ≥ xC + 1. If
(k−r) mod r ≥ xC +1, then dA,k = min{(k−r) mod r, dA,k−1} ≥ xC +1, i.e., the constraint
is already satisfied and nothing needs to be done. If (k − r) mod r < xC + 1 or there was
no previous occurrence of A, we have that dA,k = (k − r) mod r. Notice that in such cases,
we cannot have A = B since that would imply dA,k = dA,k−1 6= (k − r) mod r, and thus
by setting the parent of A to B, we have that there exists an ancestor corresponding to a
meta-block at distance xB + 1 ≤ dB,k + 1 ≤ (k − r − 1) mod r + 1 = dA,k.

Thus, what remains to be shown is how to compute xC in order to determine whether (k−
r) mod r < xC +1. Explicitly maintaining the distances to the closest ancestor corresponding
to a meta-block for all N meta characters will take too much space (O(N log logN) bits).

STACS’14

684 Faster Compact On-Line Lempel-Ziv Factorization

Instead, since the parent of a given meta-character can be obtained in constant time, we
calculate xC by simply going up the tree from C, which takes O(xC) = O(logN) time. Thus,
the update for each k can be done in O(logN) time, proving the lemma. J

Using Lemma 10, we can retrieve a meta-character A′ that corresponds to a meta-block and
an integer 0 ≤ d ≤ dAi,k such that A′[1 + d..r] = Ai[1..r− d], in O(logN) time. Although A′
may not actually occur d positions prior to an occurrence of Ai in S[1..k], fi is guaranteed to
be completely contained in A′ since it overlaps with Ai, at least as much as any meta-block
actually occurring prior to Ai in S[1..k]. Thus, fi = Ai[1..|fi|] = A′[1 + d..d + |fi|], and
(pos[A′] − 1)r + 1 + d is a previous occurrence of fi. The following lemma summarizes this
section.

I Lemma 11. We can maintain in O(N logN) total time, a dynamic data structure occupying
O(N log σ) bits of space that allows a previous occurrence of fi to be computed in O(|fi| logN)
time.

4 On-line LZ factorization based on RLE

For any string S of length N , let RLE(S) = ap1
1 a

p2
2 · · · apmm denote the run length encoding

of S. Each apkk is called an RL factor of S, where ak 6= ak+1 for any 1 ≤ k < m, ph ≥ 1
for any 1 ≤ h ≤ m, and therefore m ≤ N . Each RL factor can be represented as a pair
(ak, pk) ∈ Σ× [1..N], using O(logN) bits of space. As in the case with packed strings, we
consider the on-line LZ factorization problem, where the string is given as a sequence of
RL factors and we are to compute the s-factorization of RLE(S)[1..j] = ap1

1 · · · a
pj
j for all

j = 1, . . . ,m. Similar to the case of packed strings, we construct the DAWG of RLE(S)
of length m, which we will call the RLE-DAWG, in an on-line manner. The RLE-DAWG
has O(m) states and edges and each edge label is an RL factor apkk , occupying a total of
O(m logN) bits of space. If z is the number of s-factors of string S, then z ≤ 2m. This
allows us to describe the complexity of our algorithm without using z. The main result of
this section follows:

I Theorem 12. Given RLE(S) = ap1
1 a

p2
2 · · · apmm of size m of a string S of length N , the

s-factorization of S can be computed in O
(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time

using O(m logN) bits of space, in an on-line manner.

Proof. Let RLE(S) = ap1
1 a

p2
2 · · · apmm . For any 1 ≤ k ≤ h ≤ m, let RLE(S)[k..h] =

apkk a
pk+1
k+1 · · · a

ph
h . Let Substr(RLE(S)) = {RLE(S)[k..h] | 1 ≤ k ≤ h ≤ m}.

Assume we have already computed f1, . . . , fi−1 and we are computing a new s-factor fi
from the (`i + 1)th position of S. Let ad be the RL factor which contains the (`i + 1)th
position, and let t be the position in the RL factor where fi begins.

Firstly, consider the case where 2 ≤ t ≤ d. Let p = d− t+ 1, i.e., the remaining suffix of
ad is ap. It can be shown that ap is a prefix of fi. In the sequel, we show how to compute
the rest of fi. For each j = 1, . . . ,m and for any out-going edge e = ([u], bq, [ubq]) of a state
[u] of the RLE-DAWG for RLE(S)[1..j] and each character a ∈ Σ, define

mpe[u](a, bq) = max({p | ap←−u bq ∈ Substr(RLE(S)[1..j])} ∪ {0}).

That is, mpe[u](a, bq) represents the maximum exponent of the RL factor with character a,
that immediately precedes ←−u bq in RLE(S)[1..j]. For each pair (a, b) of characters for which
there is an out-going edge ([u], bq, [ubq]) from state [u] and mpe[u](a, bq) > 0, we insert a

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 685

point (mpe[u](a, bq), q) into Pts[u],a,b. By similar arguments to the case of packed DAWGs,
each point in Pts[u],a,b corresponds to a secondary edge, or a suffix link (labeled with ap for
some p) of a primary child, so the total number of such points is bounded by O(m).

Suppose we have successfully traversed the RLE-DAWG by u with an occurrence that is
immediately preceded by ap (i.e., apu is a prefix of s-factor fi), and we want to traverse with
the next RLE factor bq from state [u].

If u = ←−u , i.e., only primary edges were traversed, then we query Pts[u],a,b for a point
with maximum x-coordinate in the range [0, N]× [q,N]. Let (x, y) be such a point. If x ≥ p,
then since y ≥ q, there must be a previous occurrence of ap←−u bq, and hence ap←−u bq is a
prefix of fi. If there is an outgoing edge of [u] labeled by bq, then we traverse from [u] to
[ubq] and update the RLE-DAWG with the next RL factor bq, and continue to extend fi.
Otherwise, it turns out that fi = ap←−u bq. If x < p, or no such point existed, then we query
for a point with maximum y-coordinate in the range [p,N]× [0, q]. If (x′, y′) is such a point,
then fi = ap←−u by′ . If no such point existed, then fi = ap←−u .

Otherwise (if u 6= ←−u), then all occurrences of u in S[1..`i] is immediately preceded by
the unique RL factor ap′ with p′ ≥ p. Thus, if ([u], bq, [ubq]) ∈ E, then apubq is a prefix of fi.
We update the RLE-DAWG with the next RL factor bq, and continue to extend fi. If there
is no such edge, then fi = apuby, where y = min(max({k | ([u], bk, [ubk]) ∈ E} ∪ {0}) ∪ {q}).

Secondly, let us consider the case where t = 1. Let ([ε], ag, [ag]) be the edge which has
maximum exponent g for the character a from the source state [ε]. If g < d, then fi = ag.
Otherwise, ad is a prefix of fi, and we traverse the RLE-DAWG in a similar way as above,
while checking an immediately preceding occurrence of ad.

If we use priority search trees of McCreight [13], and balanced binary search trees, the
above queries and updates are supported in O(logm) time using a total of O(m logN) bits
of space. We can do better based on the following observation. For a set T of points in a
2D plane, a point (p, q) ∈ T is said to be dominant if there is no other point (p′, q′) ∈ T
satisfying both p′ ≥ p and q′ ≥ q. Let Dom[u],a,b denote the set of dominant points of
Pts[u],a,b. Now, a query for a point with maximum x-coordinate in range [0, N] × [q,N]
reduces to a successor query on the y-coordinates of points in Dom[u],a,b. On the other hand,
a query for a point with maximum y-coordinate in range [p,N]× [0, q] reduces to a successor
query on the x-coordinate of points in Dom[u],a,b. Hence, it suffices to maintain only the
dominant points.

When a new dominant point is inserted into Dom[u],a,b due to an update of the RLE-
DAWG, then all the points that have become non-dominant are deleted from Dom[u],a,b.
We can find each non-dominant point by a single predecessor/successor query. Once a
point is deleted from Dom[u],a,b, it will never be re-inserted to Dom[u],a,b. Hence, the total
number of insert/delete operations is linear in the size of Dom[u],a,b, which is O(m) for all
the states of the RLE-DAWG. Using the data structure of [2], predecessor/successor queries
and insert/delete operations are supported in O

(
min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time,

using a total of O(m logN) bits of space.
Each state of the RLE-DAWG has at most m children and the exponents of the edge

labels are in range [1, N]. Hence, at each state of the RLE-DAWG we can search branches in
O
(

min
{

(log logm)(log logN)
log log logN ,

√
logm

log logm

})
time with a total of O(m logN) bits of space, using

the data structure of [2]. A final technicality is how to access the set Dom[u],a,b which is asso-
ciated with a pair (a, b) of characters. To access Dom[u],a,b at each state [u], we maintain two
level search structures, one for the first characters and the other for the second characters of the
pairs. At each state [u] we can access Dom[u],a,b in O

(
min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})

STACS’14

686 Faster Compact On-Line Lempel-Ziv Factorization

time with a total of O(m logN) bits of space, again using the data structure of [2]. This
completes the proof. J

References
1 A. Al-Hafeedh, M. Crochemore, L. Ilie, J. Kopylov, W.F. Smyth, G. Tischler, and

M. Yusufu. A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM
Computing Surveys, 45(1):Article 5, 2012.

2 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

3 Guy E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection,
and range reporting. In Proc. SODA 2008, pages 894–903, 2008.

4 Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and
Joel Seiferas. The smallest automaton recognizing the subwords of a text. Theoretical
Computer Science, 40:31–55, 1985.

5 Maxime Crochemore. Linear searching for a square in a word. Bulletin of the European
Association of Theoretical Computer Science, 24:66–72, 1984.

6 Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq, and Arnaud
Lefebvre. Linear-time computation of local periods. Theoretical Computer Science, 326(1-
3):229–240, 2004.

7 Keisuke Goto and Hideo Bannai. Simpler and faster Lempel Ziv factorization. In Proc.
DCC 2013, pages 133–142, 2013.

8 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Proc. SEA 2013, pages 139–150, 2013.

9 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Proc. CPM 2013, pages 189–200, 2013.

10 Dominik Kempa and Simon J. Puglisi. Lempel-Ziv factorization: fast, simple, practical. In
Proc. ALENEX 2013, pages 103–112, 2013.

11 Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In Proc. FOCS 1999, pages 596–604, 1999.

12 Sebastián Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In Proc. CPM 2011,
pages 41–54, 2011.

13 Edward M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.
14 Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Proc. CPM 2011,

pages 15–26, 2011.
15 Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the longest

previous factors. In Proc. ESA 2008, pages 696–707, 2008.
16 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data structures.

In Proc. WADS 2001, pages 426–437, 2001.
17 Tatiana Starikovskaya. Computing Lempel-Ziv factorization online. In Proc. MFCS 2012,

pages 789–799, 2012.
18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
19 P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp. on

Switching and Automata Theory, pages 1–11, 1973.
20 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, IT-23(3):337–343, 1977.

	Introduction
	Preliminaries
	LZ Factorization
	Tools

	On-line LZ Factorization with Packed Strings
	Algorithm for
	Algorithm for .
	Retrieving a Previous Occurrence of

	On-line LZ factorization based on RLE

