56 research outputs found

    Identificación y chequeo de parentesco en la especie canina mediante análisis de ADN

    Get PDF
    Este trabajo presenta los primeros resultados en España de un estudio de identificación y chequeo de parentesco en la especie canina mediante microsatélites (polimorfismos del ADN). Para este trabajo se han utilizado 79 animales, 48 de los cuales no están emparentados y 31 que pertenecen a 3 familias, en los que Se han analizado 11 microsatélites. Los resultados indican la posibilidad de utilizar estos marcadores en test de paternidad con resultados altamente fiables (99%), si se utilizan más de 7 microsatélites.This work presents the first results in Spain of an study concerning identity and parentage test in dogs by microsatellites (ONA polymorphisms). 79 animals have been used for this work, (48 unrelated dogs and 31 dogs from 3 families). Our main conclusion is the necessity of using more than 7 microsatellites in arder to obtain results with 99% of garanty

    An Update on Autophagy in Prion Diseases

    Get PDF
    Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE

    Analysis of microsatellite markers in a Cuban water buffalo breed

    Get PDF
    The aim of this Regional Research Communication was to validate a panel of 30 microsatellite markers recommended by FAO/ISAG for studies of biodiversity in cattle to improve the characterisation of Cuban buffalo populations. The water buffalo (Bubalus bubalis) is an economically important livestock species. Therefore, research focused on the study of the genetic relationships among water buffalo populations is useful to support conservation decisions and to design breeding schemes. Twenty-eight of the 30 tested regions were amplified, one of which (ETH10) turned out to be monomorphic. A total of 143 alleles were observed in the Cuban water buffalo population. The average number of alleles per locus was 5·04. The number of alleles per polymorphic locus ranged from two (INRA 63 and MM12) to nine (ETH185). The observed and expected heterozygosity ranged from 0·108 (HAUT24) to 0·851 (CSSM66) and 0·104 (MM12) to 0·829(INRA32), respectively. The polymorphic information content (PIC) ranged from 0·097 (MM12) to 0·806 (INRA32), and the overall value for these markers was 0·482. Within the population, inbreeding estimates (F IS) was positive in 14 of the 30 loci analysed. This study thus highlights the usefulness of heterologous bovine microsatellite markers to assess the genetic variability in Cuban water buffalo breeds. Furthermore, the results can be utilised for future breeding strategies and conservation

    Prion Protein Gene Variability in Spanish Goats. Inference through Susceptibility to Classical Scrapie Strains and Pathogenic Distribution of Peripheral PrPsc

    Get PDF
    Classical scrapie is a neurological disorder of the central nervous system (CNS) characterized by the accumulation of an abnormal, partially protease resistant prion protein (PrPsc) in the CNS and in some peripheral tissues in domestic small ruminants. Whereas the pathological changes and genetic susceptibility of ovine scrapie are well known, caprine scrapie has been less well studied. We report here a pathological study of 13 scrapie-affected goats diagnosed in Spain during the last 9 years. We used immunohistochemical and biochemical techniques to discriminate between classical and atypical scrapie and bovine spongiform encephalopathy (BSE). All the animals displayed PrPsc distribution patterns and western blot characteristics compatible with classical scrapie. In addition, we determined the complete open reading frame sequence of the PRNP in these scrapie-affected animals. The polymorphisms observed were compared with those of the herd mates (n¿=¿665) and with the frequencies of healthy herds (n¿=¿581) of native Spanish goats (Retinta, Pirenaica and Moncaina) and other worldwide breeds reared in Spain (Saanen, Alpine and crossbreed). In total, sixteen polymorphic sites were identified, including the known amino acid substitutions at codons G37V, G127S, M137I, I142M, H143R, R151H, R154H, R211Q, Q222K, G232W, and P240S, and new polymorphisms at codons G74D, M112T, R139S, L141F and Q215R. In addition, the known 42, 138 and 179 silent mutations were detected, and one new one is reported at codon 122. The genetic differences observed in the population studied have been attributed to breed and most of the novel polymorphic codons show frequencies lower than 5%. This work provides the first basis of polymorphic distribution of PRNP in native and worldwide goat breeds reared in Spain

    Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms

    Get PDF
    Aims: to determine the presence of Clostridium difficile on fattening pig farms in north-eastern Spain. Methods and results: Twenty-seven farms were sampled. Pools of pig faecal samples (n = 210), samples of intestinal content from common farm pest species (n = 95) and environment-related samples (n = 93) were collected. Isolates were tested for toxin genes of C. difficile, and typed by PCR-ribotyping and toxinotyping. The minimal inhibitory concentrations of six antimicrobial agents were determined using Etest. Thirty-four isolates were obtained from 12 farms, and 30 (88·2%) had toxin genes. Seven ribotypes were identified. Ribotype 078 and its variant 126 were predominant (52·9%). The same ribotypes were isolated from different animal species on the same farm. None of the isolates were resistant to metronidazole or vancomycin. Conclusions: Clostridium difficile was common within the pig farm environment. Most of the positive samples came from pest species or were pest-related environmental samples. Significance and Impact of the Study: Pest species were colonized with toxigenic and antimicrobial-resistant C. difficile strains of the same ribotypes that are found in humans and pigs. Rodents and pigeons may transmit toxigenic and antimicrobial-resistant C. difficile strains that are of the same ribotypes as those occuring in humans

    Neurogranin and Neurofilament Light Chain as Preclinical Biomarkers in Scrapie

    Get PDF
    Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie

    Structure and genetic relationships between serrana de Teruel breed and other cattle breeds reared in Spain

    Get PDF
    In this work we analyze by microsatellite markers the genetic diversity, structure and relationships of the indigenous endangered Serrana de Teruel cattle breed with different breeds reared in Spain. All loci were polymorphic and a total of 198 alleles were observed across loci, with a mean of 6.79. Observed and expected heterozygosities values shown the high variability of Serrana de Teruel breed with values of 0.67 and 0.68 respectively. The neighbour net based on Reynolds distances shown the close genetic relationship among Serrana de Teruel and the mountain Parda de Montaña and Pirenaica breeds. STRUCTURE results showed a 47.5% of correctly assigned individuals to Serrana de Teruel breed using a q>0.8 threshold. The admixed animals shown a clear influence of Parda de Montaña breed.En este trabajo se analiza la variabilidad genética de la raza autóctona en peligro de extinción Serrana de Teruel, así como su relación con las ra-zas bovinas explotadas en España: Albera, Pajuna, Avileña-Negra Ibérica, Serrana Negra, Pirenaica y Parda de Montaña. La caracterización genética se ha realizado mediante marcadores microsatélites, todos han resultado polimórficos detectándose un total de 198 alelos con una media de 6,79 alelos por locus. Las heterocigosidades observadas y esperadas fueron altas y similares en el equilibrio, con valores de 0,67 y 0,68 respectivamente. A partir del estudio de las relaciones filogenéticas se ha podido observar la cercanía de la raza Serrana de Teruel con las razas de montaña Pirenaica y Parda de Montaña. Mediante el estudio de la estructura genética se observó que el porcentaje de animales correctamente asignados a la Serrana de Teruel para q>0,8 fue del 47,5%, apreciándose una clara influencia de la raza Parda de Montaña en los individuos mezclados

    Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    Get PDF
    Background: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (=2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease

    Resistance to colistin and production of extended-spectrum ß-lactamases and/or AmpC enzymes in Salmonella isolates collected from healthy pigs in Northwest Spain in two periods: 2008-2009 and 2018

    Get PDF
    Salmonellosis is a common subclinical infection in pigs and therefore apparently healthy animals may represent a reservoir of antibiotic-resistant Salmonella for humans. This study estimates and characterizes resistance to two classes of antimicrobials considered of the highest priority within the critically important antimicrobials for humans, i.e. colistin (CR) and 3rd generation cephalosporins (3GC), on a collection of Salmonella isolates from pigs from two periods: between 2008 and 09, when colistin was massively used; and in 2018, after three years under a National Plan against Antibiotic Resistance. Prevalence of CR was low (6 out of 625; 0.96%; 95%CI: 0.44–2.1) in 2008–09 and associated mostly to the mcr-1 gene, which was detected in four S. 4,5,12:i:- isolates. Polymorphisms in the pmrAB genes were detected in a S. 9,12:-:- isolate. No CR was detected in 2018 out of 59 isolates tested. Among 270 Salmonella isolates considered for the assessment of resistance to 3GC in the 2008–2009 sampling, only one Salmonella Bredeney (0.37%; 95%CI: 0.07–2.1) showed resistance to 3GC, which was associated with the blaCMY-2 gene (AmpC producer). In 2018, six isolates out of 59 (10.2%; 95%CI: 4.7–20.5) showed resistance to 3GC, but only two different strains were identified (S. 4,12:i:- and S. Rissen), both confirmed as extended-spectrum β-lactamases (ESBL) producers. The blaCTX-M-3 and blaTEM-1b genes in S. 4,12:i:- and the blaTEM-1b gene in S. Rissen seemed to be associated with this resistance. Overall, the prevalence of CR in Salmonella appeared to be very low in 2008–2009 despite the considerable use of colistin in pigs at that time, and seemed to remain so in 2018. Resistance to 3GC was even lower in 2008–2009 but somewhat higher in 2018. Resistance was mostly coded by genes associated with mobile genetic elements. Most serotypes involved in these antimicrobial resistances displayed a multidrug resistance pattern and were considered zoonotic

    Increased circulating microRNAs miR-342-3p and miR-21-5p in natural sheep prion disease

    Get PDF
    Scrapie is a transmissible spongiform encephalopathy (TSE), or prion disease, of sheep and goats. As no simple diagnostic tests are yet available to detect TSEs in vivo, easily accessible biomarkers could facilitate the eradication of scrapie agents from the food chain. To this end, we analysed by quantitative reverse transcription PCR a selected set of candidate microRNAs (miRNAs) from circulating blood plasma of naturally infected, classical scrapie sheep that demonstrated clear scrapie symptoms and pathology. Significant scrapie-associated increase was repeatedly found for miR-342-3p and miR-21-5p. This is the first demonstration, to our knowledge, of circulating miRNA alterations in any animal suffering from TSE. Genome-wide expression studies are warranted to investigate the true depth of miRNA alterations in naturally occurring TSEs, especially in presymptomatic animals, as the presented study demonstrates the potential feasibility of miRNAs as circulating TSE biomarkers
    corecore