10 research outputs found
Inertia-driven resonant excitation of a magnetic skyrmion
Topological spin structures such as magnetic domain walls, vortices, and skyrmions, have been receiving great interest because of their high potential application in various spintronic devices. To utilize them in the future spintronic devices, it is first necessary to understand the dynamics of the topological spin structures. Since inertial effect plays a crucial role in the dynamics of a particle, understanding the inertial effect of topological spin structures is an important task. Here, we report that a strong inertial effect appears steadily when a skyrmion is driven by an oscillating spin-Hall-spintorque (SHST). We find that the skyrmion exhibits an inertia-driven hypocycloid-type trajectory when it is excited by the oscillating SHST. This motion has not been achieved by an oscillating magnetic field, which only excites the breathing mode without the inertial effect. The distinct inertial effect can be explained in terms of a spin wave excitation in the skyrmion boundary which is induced by the non-uniform SHST. Furthermore, the inertia-driven resonant excitation provides a way of experimentally estimating the inertial mass of the skyrmion. Our results therefore pave the way for the development of skyrmion-based device applications
Dynamics and inertia of skyrmionic spin structures
Skyrmions are topologically protected winding vector fields characterized by a spherical topology. Magnetic skyrmions can arise as the result of the interplay of various interactions, including exchange, dipolar and anisotropy energy in the case of magnetic bubbles and an additional Dzyaloshinskii-Moriya interaction in the case of chiral skyrmions. Whereas the static and low-frequency dynamics of skyrmions are already well under control, their gigahertz dynamical behaviour has not been directly observed in real space. Here, we image the gigahertz gyrotropic eigenmode dynamics of a single magnetic bubble and use its trajectory to experimentally confirm its skyrmion topology. The particular trajectory points to the presence of strong inertia, with a mass much larger than predicted by existing theories. This mass is endowed by the topological confinement of the skyrmion and the energy associated with its size change. It is thereby expected to be found in all skyrmionic structures in magnetic systems and beyond. Our experiments demonstrate that the mass term plays a key role in describing skyrmion dynamics.
High-temperature magnetization reversal in the inertial regime
International audienc
Enhancement of hot carrier effect and signatures of confinement in terms of thermalization power in quantum well solar cell
International audienceAbstract A theoretical model using electron–phonon scattering rate equations is developed for assessing carrier thermalization under steady-state conditions in two-dimensional systems. The model is applied to investigate the hot carrier effect in III–V hot-carrier solar cells with a quantum well absorber. The question underlying the proposed investigation is: what is the power required to maintain two populations of electron and hole carriers in a quasi-equilibrium state at fixed temperatures and quasi-Fermi level splitting? The obtained answer is that the thermalization power density is reduced in two-dimensional systems compared to their bulk counterpart, which demonstrates a confinement-induced enhancement of the hot carrier effect in quantum wells. This power overall increases with the well thickness, and it is moreover shown that the intra-subband contribution dominates at small thicknesses while the inter-subband contribution increases with thickness and dominates in the bulk limit. Finally, the effects of the thermodynamic state of phonons and screening are clarified. In particular, the two-dimensional thermalization power density exhibits a non-monotonic dependence on the thickness of the quantum well layer, when both out-of-equilibrium longitudinal optical phonons and screening effects are taken into account. Our theoretical and numerical results provide tracks to interpret intriguing experimental observations in quantum well physics. They will also offer guidelines to increase the yield of photovoltaic effect based on the hot carrier effect using quantum well heterostructures, a result critical to the research toward high-efficiency solar cell devices
Giant moving vortex mass in thick magnetic nanodots
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing