6,696 research outputs found

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request

    Weak Measurements in Non-Hermitian Systems

    Full text link
    "Weak measurements" -- involving a weak unitary interaction between a quantum system and a meter followed by a projective measurement -- are investigated when the system has a non-Hermitian Hamiltonian. We show in particular how the standard definition of the "weak value" of an observable must be modified. These studies are undertaken in the context of bound state scattering theory, a non-Hermitian formalism for which the Hilbert spaces involved are unambiguously defined and the metric operators can be explicitly computed. Numerical examples are given for a model system

    Chaotic systems in complex phase space

    Full text link
    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.Comment: 22 page, 16 figure

    Asymptotics of Expansion of the Evolution Operator Kernel in Powers of Time Interval Δt\Delta t

    Full text link
    The upper bound for asymptotic behavior of the coefficients of expansion of the evolution operator kernel in powers of the time interval \Dt was obtained. It is found that for the nonpolynomial potentials the coefficients may increase as n!n!. But increasing may be more slow if the contributions with opposite signs cancel each other. Particularly, it is not excluded that for number of the potentials the expansion is convergent. For the polynomial potentials \Dt-expansion is certainly asymptotic one. The coefficients increase in this case as Γ(nL2L+2)\Gamma(n \frac{L-2}{L+2}), where LL is the order of the polynom. It means that the point \Dt=0 is singular point of the kernel.Comment: 12 pp., LaTe

    Convergence of the Optimized Delta Expansion for the Connected Vacuum Amplitude: Zero Dimensions

    Full text link
    Recent proofs of the convergence of the linear delta expansion in zero and in one dimensions have been limited to the analogue of the vacuum generating functional in field theory. In zero dimensions it was shown that with an appropriate, NN-dependent, choice of an optimizing parameter \l, which is an important feature of the method, the sequence of approximants ZNZ_N tends to ZZ with an error proportional to ecN{\rm e}^{-cN}. In the present paper we establish the convergence of the linear delta expansion for the connected vacuum function W=lnZW=\ln Z. We show that with the same choice of \l the corresponding sequence WNW_N tends to WW with an error proportional to ecN{\rm e}^{-c\sqrt N}. The rate of convergence of the latter sequence is governed by the positions of the zeros of ZNZ_N.Comment: 20 pages, LaTeX, Imperial/TP/92-93/5

    PT-symmetric interpretation of double-scaling

    Get PDF
    The conventional double-scaling limit of an O(N)-symmetric quartic quantum field theory is inconsistent because the critical coupling constant is negative. Thus, at the critical coupling the Lagrangian defines a quantum theory with an upside-down potential whose energy appears to be unbounded below. Worse yet, the integral representation of the partition function of the theory does not exist. It is shown that one can avoid these difficulties if one replaces the original theory by its PT-symmetric analog. For a zero-dimensional O(N)-symmetric quartic vector model the partition function of the PT-symmetric analog is calculated explicitly in the double-scaling limit.Comment: 11 pages, 2 figure

    The GL 569 Multiple System

    Full text link
    We report the results of high spectral and angular resolution infrared observations of the multiple system GL 569 A and B that were intended to measure the dynamical masses of the brown dwarf binary believed to comprise GL 569 B. Our analysis did not yield this result but, instead, revealed two surprises. First, at age ~100 Myr, the system is younger than had been reported earlier. Second, our spectroscopic and photometric results provide support for earlier indications that GL 569 B is actually a hierarchical brown dwarf triple rather than a binary. Our results suggest that the three components of GL 569 B have roughly equal mass, ~0.04 Msun.Comment: 29 pages, 10 figures, accepted for publication in the Astrophysical Journal; minor corrections to Section 5.1; changed typo in 6.

    Front Propagation up a Reaction Rate Gradient

    Full text link
    We expand on a previous study of fronts in finite particle number reaction-diffusion systems in the presence of a reaction rate gradient in the direction of the front motion. We study the system via reaction-diffusion equations, using the expedient of a cutoff in the reaction rate below some critical density to capture the essential role of fl uctuations in the system. For large density, the velocity is large, which allows for an approximate analytic treatment. We derive an analytic approximation for the front velocity depe ndence on bulk particle density, showing that the velocity indeed diverge s in the infinite density limit. The form in which diffusion is impleme nted, namely nearest-neighbor hopping on a lattice, is seen to have an essential impact on the nature of the divergence

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure
    corecore