276 research outputs found

    BaFe_{1.8}Co_{0.2}As_2 thin film hybrid Josephson junctions

    Full text link
    Josephson junctions with iron pnictides open the way for fundamental experiments on superconductivity in these materials and their application in superconducting devices. Here, we present hybrid Josephson junctions with a BaFe_{1.8}Co_{0.2}As_2 thin film electrode, an Au barrier and a PbIn counter electrode. The junctions show RSJ-like current-voltage characteristics up to the critical temperature of the counter electrode of about 7.2K. The temperature dependence of the critical current, IC, does not show an Ambegaokar-Baratoff behavior. Well-pronounced Shapiro steps are observed at microwave frequencies of 10-18GHz. Assuming an excess current, I_ex, of 200 {\mu}A at 4.2K we get an effective I_C R_N product of 6 {\mu}V.Comment: submitted to Appl. Phys. Let

    Influence of the spreading resistance on the conductance spectrum of planar hybrid thin film SNS' junctions based on iron pnictides

    Get PDF
    To investigate the superconducting properties of iron pnictides we prepared planar hybrid SNS' junctions in thin film technology with a pnictide base electrode, a gold barrier layer and a lead counter electrode. Our design allows characterization of the electrodes and the junction independently in a 4-probe method. We show how both electrodes influence the measured spectra due to their spreading resistance. While the Pb electrode has a constant resistance above its TcT_c, the contribution of the pnictide electrode is clearly current-dependent and thus it needs a more advanced method to be corrected. We present an empirical method, which is simple to apply and allows to deal with the spreading resistance in our junctions to recalculate the actual conductance and voltage of one junction at given temperature

    Directional Roll-up of Nanomembranes Mediated by Wrinkling

    Full text link
    We investigate the relaxation of rectangular wrinkled thin films intrinsically containing an initial strain gradient. A preferential rolling direction, depending on wrinkle geometry and strain gradient, is theoretically predicted and experimentally verified. In contrast to typical rolled-up nanomembranes, which bend perpendicular to the longer edge of rectangular patterns, we find a regime where rolling parallel to the long edge of the wrinkled film is favorable. A non-uniform radius of the rolled-up film is well reproduced by elasticity theory and simulations of the film relaxation using a finite element method.Comment: 4 pages, 4 figure

    АСР процесса горения в топке котла при реализации безмазутной растопки

    Get PDF
    In the last years laser-induced breakdown spectroscopy was introduced in various industrial applications. Automated inspection machines were developed capable to operate under harsh ambient conditions. As an example laser-induced breakdown spectroscopy-based inspection machines for the identification testing of fittings and tubes made of high-alloy steel will be presented. Within an inspection time of 2 seconds 100 spectra are gained yielding the signals of 12 elemental lines to identify more than 30 different high-alloy steel grades in order to prevent material mix-ups at the end of a production line prior to packaging and dispatch. More than 1.5 million products have been inspected within the last 5 years in routine operation. Requirements, concepts and design of such machines will be discussed considering the issues on analytical resolution and system monitoring. For the first time a data set of more than 10(exp 8) laser-induced breakdown spectroscopy measurements has become available, giving insight into the long-term behavior of the system performance. First evaluations of this data demonstrate the influence of laser power, sample position and temperature on the spectroscopic signals and the system state. Future demands on next-generation inspection machines based on laser-induced breakdown spectroscopy will be defined

    Стабилизация движения робота по показаниям электронного компаса

    Get PDF
    Laser-induced breakdown spectroscopy has been applied to polymer samples in order to investigate the possibility of using this method for the identification of different materials. The plasma emission spectra of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), polyethylene terephthylene (PET), and polypropylene (PP) have been studied. Spectral features have been measured - for example, the 725.7 nm chlorine line, the 486.13 mm H(?) line, and the 247.86 nm carbon line - whose evaluation with neural networks permits identification accuracies between 90 and 1 00 per cent, depending on polymer type

    Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures

    Full text link
    The boundary conditions, customarily used in the Landau-type approach to ferroelectric thin films and nanostructures, have to be modified to take into account that a surface of a ferroelectric (FE) is a defect of the ``field'' type. The surface (interface) field is coupled to a normal component of polarization and, as a result, the second order phase transitions are generally suppressed and anomalies in response are washed out. In FE films with a compositional (grading) or some other type of inhomogeneity, the transition into a monodomain state is suppressed, but a transition with formation of a domain structure may occur.Comment: 5 pages, 1 figure; the effective bias field is very large, the estimate is adde

    Cyclotron resonance overtones and near-field magnetoabsorption via terahertz Bernstein modes in graphene

    Full text link
    Two-dimensional electron systems subjected to a perpendicular magnetic field absorb electromagnetic radiation via the cyclotron resonance (CR). Here we report a qualitative breach of this well-known behaviour in graphene. Our study of the terahertz photoresponse reveals a resonant burst at the main overtone of the CR, drastically exceeding the signal detected at the position of the ordinary CR. In accordance with the developed theory, the photoresponse dependencies on the magnetic field, doping level, and sample geometry suggest that the origin of this anomaly lies in the near-field magnetoabsorption facilitated by the Bernstein modes, ultra-slow magnetoplasmonic excitations reshaped by nonlocal electron dynamics. Close to the CR harmonics, these modes are characterized by a flat dispersion and a diverging plasmonic density of states that strongly amplifies the radiation absorption. Besides fundamental interest, our experimental results and developed theory show that the radiation absorption via nonlocal collective modes can facilitate a strong photoresponse, a behaviour potentially useful for infrared and terahertz technology.Comment: 27 pages, 22 figure
    corecore