We analyze the collective dynamics of self-propelling particles (spps) which
move at small Reynolds numbers including the hydrodynamic coupling to the
suspending solvent through numerical simulations. The velocity distribution
functions show marked deviations from Gaussian behavior at short times, and the
mean-square displacement at long times shows a transition from diffusive to
ballistic motion for appropriate driving mechanism at low concentrations. We
discuss the structures the spps form at long times and how they correlate to
their dynamic behavior.Comment: 7 pages, 4 figure